Основная функция лейкоцитов


Функции лейкоцитов

Лейкоциты (белые кровяные тельца) – это клетки крови, содержащие ядро. У одних лейкоцитов цитоплазма содержит гранулы, поэтому их называют гранулоцитами. У других зернистость отсутствует, их относят к агранулоцитам. Выделяют три формы гранулоцитов. Те из них, гранулы которых окрашиваются кислыми красителями (эозином), называются эозинофилами. Лейкоциты, зернистость которых восприимчива к основным красителям – базофилами. Лейкоциты, гранулы которых окрашиваются и кислыми, и основными красителями, относят к нейтрофилам. Агранулоциты подразделяются на моноциты и лимфоциты. Все гранулоциты и моноциты образуются в красном костном мозге, и называется клетками миелоидного ряда. Лимфоциты также образуются из стволовых клеток костного мозга, но размножаются в лимфатических узлах, миндалинах, аппендиксе, тмусе, лимфатических бляшках кишечника. Это клетки лимфоидного ряда.

Клетки крови под микроскопом

Общей функцией всех лейкоцитов является защита организма от бактериальных и вирусных инфекций, паразитарных инвазий, поддержание тканевого гомеостаза и участие в регенерации тканей.

Нейтрофилы находятся в сосудистом русле 6-8 часов, а затем переходят в слизистые оболочки. Они составляют подавляющее большинство гранулоцитов. Основная функция нейтрофилов заключается в уничтожении бактерий и различных токсинов. Они обладают способностью к хемотаксису и фагоцитозу. Выделяемые нейтрофилами вазоактивные вещества, позволяют проникать им через стенку капилляров и мигрировать к очагу воспаления. Движение лейкоцитов к нему происходит благодаря тому, что находящиеся в воспаленной ткани Т-лимфоциты и макрофаги вырабатывают хемоаттрактанты. Это вещества, которые стимулируют их продвижение к очагу. К ним относятся производные арахидоновой кислоты – лейкотриены, а также эндотоксины. Поглощенные бактерии попадают в фагоцитарные вакуоли, где подвергаются воздействию ионов кислорода, перекиси водорода, а также лизосомных ферментов. Важным свойством нейтрофилов является то, что они могут существовать в воспаленных и отечных тканях бедных кислородом. Гной в основном состоит из нейтрофилов и их остатков. Выделяющиеся при распаде нейтрофилов ферменты, размягчают окружающие ткани. За счет чего формируется гнойный очаг – абсцесс.

Базофилы содержатся в количестве 0-1%. Они находятся в кровеносном русле 12 часов. Крупные гранулы базофилов содержат гепарин и гистамин. За счет выделяемого ими гепарина ускоряется липолиз жиров в крови. На мембране базофилов имеются Е-рецепторы, к которым присоединяются Е-глобулины. В свою очередь с этими глобулинами могут связываться аллергены. В результате из базофилов выделяется гистамин. Возникает аллергическая реакция – сенная лихорадка (насморк, зудящая сыпь на коже, ее покраснение, спазм бронхов). Кроме того, гистамин базофилов стимулирует фагоцитоз, оказывает противовоспалительное действие. В базофилах содержится фактор, активирующий тромбоциты, который стимулирует их агрегацию и высвобождение тромбоцитарных факторов свертывания крови. Выделяют гепарин и гистамин, они предупреждают образование тромбов в мелких венах легких и печени.

Эозинофилы содержатся в количестве 1-5%. Их содержание изменяется в течении суток. Утром их меньше, вечером больше. Эти колебания объясняются изменениями концентрации глюкокортикоидов надпочечников в крови. Эозинофилы обладают способностью к фагоцитозу, связыванию белков токсинов и антибактериальной активностью. Их гранулы содержат белок, нейтрализующий гепарин, а также медиаторы воспаления и ферменты, препятствующие агрегации тромбоцитов. Эозинофилы принимают участие в борьбе с паразитарными инвазиями. Они продвигаются к местам скопления в тканях тучных клеток и базофилов, которые образуются вокруг паразитов. Там они фиксируются на поверхности паразита. Затем проникают в его ткань и выделяют ферменты, вызывающие его гибель. Поэтому при паразитарных заболеваниях возникает эозинофилия – повышение содержания эозинофилов. При аллергических состояниях и аутоиммунных заболеваниях, эозинофилы накапливаются в тканях, где происходит аллергическая реакция, например, в прибронхиональной ткани легких при бронхиальной астме. Здесь они нейтрализуют вещества, образующиеся в ходе этих реакций. Это гистамин, субстанция анафилаксии, фактор агрегации тромбоцитов. В результате выраженность аллергической реакции снижается. Поэтому возрастает содержание эозинофилов и при этих состояниях.

Моноциты – наиболее крупные клетки крови. Их 2-10%. Способность у макрофагов, т.е. вышедших из кровяного русла моноцитов, к фагоцитозу больше, чем у других лейкоцитов. Они могут совершать амебоидные движения. При превращении моноцита в макрофаг увеличивается его размер, количество лизосом и ферментов. Макрофаги вырабатывают больше 100 биологически активных веществ. Это эритропоэтин, образующийся из арахидоновой кислоты, простагаландины и лейкотриены. Выделяемый ими интерлейкотин-1, стимулирует пролиферацию лимфоцитов, остеобластов, фибробластов, эндотелиальных клеток. Макрофаги фагоцитируют и уничтожают микроорганизмы, простейших паразитов, старые и поврежденные, в том числе опухолевые клетки. Это их свойство обусловлено наличием в макрофагах оксидантов, в первую очередь супероксида, перекиси водорода, гидроксиланионов. Кроме того, макрофаги участвуют в формировании иммунного ответа, воспаления, стимулируют регенерацию тканей. В тканях некоторые макрофаги превращаются в неподвижные гистиоциты, которые делятся и образуют воспалительный вал вокруг инородных тел, не поддающихся действию ферментов.

Лимфоциты составляют 20-40% всех лейкоцитов. Они делятся на Т- и В-лимфоциты. Первые дифференцируются в тимусе, вторые – в различных лимфатических узлах. Т-клетки делятся на несколько групп. Т-киллеры уничтожают чужеродные клетки-антигены и бактерии. Т-хелперы участвуют в реакции антиген-антитело. Т-клетки иммунологической памяти запоминают структуру антигена и распознают его. Т-амплификаторы стимулируют иммунные реакции, а Т-супрессоры тормозят образование иммуноглобулинов. В-лимфоциты составляют меньшую часть. Они вырабатывают иммуноглобулины и могут превращаться в клетки памяти.

Общее количество лейкоцитов 4000-9000 мкл крови или 4-9. 109л. В отличие от эритроцитов, численность лейкоцитов колеблется в зависимости от функционального состояния организма. Понижение содержания лейкоцитов называется лейкопенией, повышение – лейкоцитозом. Небольшой физиологический лейкоцитоз наблюдается при физической и умственной работе, а также после еды – пищеварительный лейкоцитоз. Чаще всего лейкоцитоз и лейкопения возникают при различных заболеваниях. Лейкоцитоз наблюдается при инфекционных, паразитарных и воспалительных заболеваниях, болезнях крови, лейкозах. В последнем случае лейкоциты являются малодифференцированными и не могут выполнять свои функции. Лейкопения возникает при нарушениях кроветворения, вызванных действием ионизирующих излучений (лучевая болезнь), токсических веществ, например бензола, лекарственных средств (левомицетин), а также при тяжелом сепсисе. Больше всего уменьшается содержание нейтрофилов.

Процентное содержание различных форм лейкоцитов называется лейкоцитарной формулой. В норме их соотношение постоянно изменяется при заболеваниях. Поэтому исследование лейкоцитарной формулы необходимо для диагностики.

Нормальная лейкоцитарная формула.

Гранулоциты:

Базофилы 0-1%.

Эозинофилы 1-5%.

Нейтрофилы.

Юные 0.

Палочкоядерные 1-5%.

Сегментоядерные 47-72%.

Агранулоциты.

Моноциты 2-10%.

Лимфоциты 20-40%.

Основные инфекционные заболевания сопровождаются нейтрофильным лейкоцитозом, снижением количества лимфоцитов и эозинофилов. Если затем возникает моноцитоз, это свидетельствует о победе организма над инфекцией. При хронических инфекциях возникает лимфоцитоз.

Подсчет общего количества лейкоцитов производится в камере Горяева. Кровь набирается в меланжер для лейкоцитов, и разводят ее в 10 раз 5%-ным раствором уксусной кислоты, подкрашенной метиленовой синью или генцианвиолетом. В течение нескольких минут встряхивают меланжер. За это время уксусная кислота, разрушает эритроциты и оболочку лейкоцитов, а их ядра прокрашиваются красителем. Полученной смесью заполняют счетную камеру и под микроскопом считают лейкоциты в 25 больших квадратах. Общее количество лейкоцитов рассчитывают по формуле:

Х = 4000. а. в/б.

Где а – число сосчитанных в квадратах лейкоцитов;

б – число малых квадратов, в которых производился подсчет (400);

в – разведение крови (10);

4000 – величина, обратная объему жидкости над малым квадратом.

Для исследования лейкоцитарной формулы мазок крови на предметном стекле высушивают и красят смесью из кислого и основного красителей. Например, по Романовскому-Гимзе. Затем под большим увеличением считают количество различных форм минимум из 100 сосчитанных.



biofile.ru

Функции лейкоцитов

Говорят, за всю жизнь костный мозг человека производит несколько тонн лейкоцитов. Сложно представить, как именно специалисты смогли это подсчитать, но поверить в правдивость такого утверждения довольно легко. Уровень лейкоцитов на протяжении жизни поддерживается на более или менее постоянном уровне, однако такая кажущаяся стабильность сохраняется благодаря одновременному протеканию двух очень интенсивных процессов: образования белых кровяных клеток и их гибели. 

Что же за задачи стоят перед лейкоцитами, если они так быстро «изнашиваются»?

Основные функции лейкоцитов:

1. Лейкоциты – основа иммунитета, они формируют все органы иммунной системы, встречаются во всех тканях и в крови. Везде, где они находятся, ткани обладают способностью защищаться от инфекций, собственных больных клеток и других угроз. Кроме того, многие белые кровяные клетки могут перемещаться в те места, где в организм проник «враг». Также они усиленно размножаются при создании условий, когда их функции наиболее востребованы. Стоит начаться какому-то заболеванию – и соответствующие лейкоциты в крови повышаются.

2. Некоторые разновидности лейкоцитов обладают способностью к фагоцитозу (моноциты, макрофаги, нейтрофилы). Это особый древний защитный механизм, в ходе которого клетки атакуют проникшего в тело обидчика, захватывают его, поглощают и «переваривают». Они работают по принципу «кто к нам с мечом придет, тот от него и погибнет»: сами реализуют те цели, которые микробы и другие агрессоры ставят относительно здоровых клеток. 

3. Другие лейкоциты, а именно лимфоциты, тоже уничтожают микроорганизмы, а также поврежденные, больные, старые клетки собственного организма, но делают они это иначе и фагоцитами не являются. Так называемые Т-клетки «убивают прикосновением». Они вступают с объектом в контакт, и в месте этого контакта в цитоплазме атакуемой клетки образуется отверстие, из-за чего она гибнет. В-лимфоциты действуют иначе. Они выделяют антитела: растворимые вещества, которые также оказывают губительное действие на «чужаков». 

4. Лейкоциты обладают функцией памяти. Они запоминают все вредоносные объекты, которые воздействовали на организм человека на протяжении его жизни. Соответственно, чем мы взрослее, тем богаче память нашего иммунитета. Некоторые «знания» лейкоциты также получают по наследству, потому что иммунная защита может передаваться при помощи специальных веществ (информационных молекул) от матери к ребенку. 

Благодаря наличию у иммунитета памяти лейкоциты могут быстро реагировать на  некоторых знакомых им «обидчиков», то есть на тех, память о которых сохранилась у иммунитета с прошлой встречи.

5. Некоторые из белых кровяных клеток, такие как базофилы и эозинофилы, участвуют в защите организма от аллергенов. 

6. Лейкоциты контролируют, направляют, увеличивают или уменьшают активность друг друга. Это способствует нормальному протеканию процессов иммунной защиты. 

7. Белые кровяные клетки обладают способностью к самовосстановлению. Это очень полезно, когда на организм действуют пагубные факторы, нарушающие их образование. Например, при онкологических заболеваниях после  химиотерапии лейкоциты снижаются, так как она подавляет костный мозг. Однако с течением времени при успешном лечении опухоли их количество и свойства снова восстанавливаются, и они вновь начинают полноценно выполнять остальные свои функции.

Во вред, а не во благо

К сожалению, иногда природная настороженность лейкоцитов в отношении вредоносных частиц  играет нам совсем не на руку. Например, лейкоциты у женщины могут навредить ребенку, если  женщина беременна. 

Дело в том, что фактически плод является чужеродным объектом для организма будущей мамы, ведь в нем содержатся не только ее гены, но и гены отца ребенка. По этой причине белые кровяные клетки стремятся напасть на эмбрион, уничтожить его, изгнать из организма матери. 

В некоторых случаях, при нарушениях со стороны здоровья женщины, это действительно может случиться. Но у здоровых подобного не происходит. Если бы этот механизм реализовался, то вряд ли человечество существовало бы до сих пор. К счастью, вместе с «намерением» лейкоцитов уничтожить плод возникает перестройка иммунной системы, которая приводит к снижению активности белых кровяных клеток. Уровень лейкоцитов (по крайней мере, некоторых их видов) снижается, и степень их агрессии заметно падает, что позволяет беременности завершиться в положенный срок рождением живого и здорового ребенка. 

Еще один случай, когда функции лейкоцитов несут вред вместо пользы, вспомнят хирурги-трансплантологи. При пересадке органов от других людей и даже при пересадке собственных тканей из одного места в другое возможно такое явление, как реакция отторжения. 

Лейкоциты (главным образом лимфоциты) распознают пересаживаемые ткани как чужеродные, расценивает проведенную операцию как мощную атаку вредоносных антигенов, запускают процесс воспаления и разрушения «чужих» тканей. В результате орган не приживается, организм начинает его отторгать, и может возникнуть необходимость срочно его удалить, чтобы сохранить человеку жизнь.

Всем пациентам, которые пережили трансплантацию, вводят особые препараты, снижающие образование и активность иммунитета – иммуносупрессоры.   При этой своеобразной химиотерапии лейкоциты находятся в «полусонном» состоянии и не так сильно реагируют на «угрозу» в виде нового органа. Это дает шанс на то, чтобы новые ткани стали полноценной частью организма. 

 Функции лейкоцитов чрезвычайно сложны; разные клетки выполняют определенные задачи, каждый вид этих клеток имеет множество разновидностей, каждая из этих разновидностей осуществляет свои цели. Регуляция деятельности многоступенчатой системы белых кровяных клеток – это очень непростая миссия для организма, поэтому в иммунной системе достаточно часто происходят сбои. Результатами их становится повышенная заболеваемость инфекциями, аутоиммунные, аллергические процессы, даже онкологические болезни. 

Чтобы укрепить иммунную систему, избежать неприятностей со здоровьем и помочь его восстановлению при уже возникших проблемах, рекомендуется использовать иммуномодуляторы. Препарат Трансфер Фактор оказывает положительное воздействие на состояние клеток-фагоцитов, лимфоцитарное звено, моноциты и макрофаги. Кроме того, являясь источником информационных молекул, средство способствует обогащению иммунной памяти. Прием Трансфер Фактора закладывает основу для гармоничной и правильной работы иммунитета, а значит, для безукоризненного осуществления лейкоцитами их непростых функций.  

www.transferfaktory.ru

Лейкоциты. Функции Лейкоцитов

Лейкоциты формируют в организме человека мощный кровяной и тканевой барьеры против микробной, вирусной и паразитарной (гельминтной) инфекции, поддерживают тканевой гомеостазис и регенерацию тканей.

У взрослого человека в крови содержится 4-9 x 109/л лейкоцитов.

Увеличение  количества лейкоцитов называется лейко­цитозом,

уменьшение количества лейкоцитов называется лейкопенией.

Лейкоциты крови представле­ны гранулоцитами, т.е. лейкоцитами, в цитоплазме которых при окрашивании выявляется зернистость, и агранулоцитами, цитоплазма которых не содержит зернистости. К гранулоцитам относят нейтрофильные, эозинофильные и базофильные лейкоциты, а к агранулоцитам — лимфоциты и моноциты.

Процентное отношение лейкоцитов разных серий в крови называется лейкоцитарной формулой(табл. 6.2.). Таблица   6.2.  Лейкоцитарная   формула

Формы лейкоцитов в крови Процент содержания  Абсолютное значение лейкоцитов в крови (число клеток × 109/л)
Агранулоциты Лимфоциты 19 — 37 1,20 — 3,00
Моноциты 3 — 11 0,09 — 0,60
Гранулоциты Нейтрофилы палочкоядерные 1 — 6 0,04 — 0,30
Нейтрофилы сегментоедерные 47 — 72 2,00 — 5,50
Базофилы 0 — 1 0,0 — 0,065
Эозинофилы 0,5 — 5,0 0,02 — 0,30

Функцией зрелых нейтрофильных лейкоцитов является уничтожение, проникших в орга­низм инфекционных агентом. Осуществляя ее они тесно взаимодей­ствуют с макрофагами, Т- и В-лимфоцитами. На важность функ­ционального вклада нейтрофилов и защиту организма от инфекции указывает, например, тяжесть течения инфекционных заболеваний у больных, страдающих сниженной продукцией или качественными на­рушениями этих клеток. Нейтрофилы секретируют вещества, обла­дающие бактерицидными эффектами, способствуют регенерации тканей, удаляя из них поврежденные клетки, а также секретируя сти­мулирующие регенерацию вещества. Для зрелого нейтрофильного лейкоцита характерно сегментированнное на 2- 5 долей ядро, содер­жащее уплотненный хроматин. Его цитоплазма содержит многочис­ленные мелкие гранулы трех типов, нейтрофильные при окраске по Романовскому- Гимза. Часть этих гранул, дающих положительную окраску на фермент миелопероксидазу, представлена лизосомами, содержащими многочисленные энзимы: лизоцим, повреждающий стенку бактерий; катионные белки, нарушающие дыхание и рост микроорганизмов; нейтрофильные протеазы и кислые гидролазы, позволяющие нейтрофилам легко переваривать фагоцитированные объекты.

Гранулы нейтрофилов, не окрашивающиеся на миелопероксидазу, содержат лактоферрин, оказывающий бактериостатическое действие, транскобаламины I и III — переносчики витамина В12 в крови, лизоцим. В гранулах третьего типа содержатся кислые глюкозаминогликаны, участвующие в процессах размножения, роста и регене­рации тканей. Гранулы 2-го и 3-го типов — это секреторные органеллы, выделяющие секрет и вне фагоцитоза, что позволяет отнести нейтрофилы к клеткам, постоянно секретирующим биологи­чески активные  вещества.

Нейтрофилы осуществляют свои функции, благодаря способности быстро мигрировать и накапливаться в инфицированном или по­врежденном участках организма, фагоцитировать, т.е. захватывать и разрушать в фагоцитарных вакуолях внутри клетки поглощенные бактерии и поврежденные клетки. Их способность к миграции свя­зана с хорошо развитым аппаратом движения. Выбор направления их движения к воспаленным или инфицированным тканям обуслов­лен появлением в этих тканях вазоактивных и хемотаксических факторов. Вазоактивные факторы повышают проницаемость капил­ляров, что способствует миграции нейтрофилов в ткань. Хемотаксические факторы взаимодействуют с рецепторами на поверхности гранулоцитов, образуя лиганд-рецепторный комплекс, определяющий движение нейтрофилов к воспаленному участку. Самым мощным хемотаксическим эффектом обладают лейкотриены, производные метаболизма арахидоновой кислоты в мембране клеток. Они секре-тируются активированными Т-лимфоцитами и макрофагами после воздействия на них бактериальных веществ. Помимо лейкотриенов эти клетки секретируют другие хемоатрактанты — эндотоксины. Важными хемотаксическими факторами являются продукты актива­ции комплемента — фрагменты его молекул С2а и С5а. Некоторые из этих факторов, особенно С , функционируют как опсонины, т.е. вещества, облегчающие фагоцитоз бактерий (от греческого opsonein — делать  съедобным).

Бактерицидный эффект нейтрофилов связан:

Во-первых, с возни­кающим в них «метаболическим взрывом», характеризуемым увели­чением потребления кислорода, образованием супероксидных ионов (0—2) и перекиси водорола (Н2О2). «Метаболический взрыв» начина­ется  спустя  30-60  секунд  после  контакта  мембраны  нейтрофилы  с активирующим агентом. Перекись водорода и супероксидные ионы поражают поглощенные клеткой бактерии, окисляя под влиянием миелопероксидазы галогены (Сl—, J—) мембраны бактерий. Во-вто­рых, бактерицидный эффект нейтрофилов связан с секрецией лизоцима, лактоферрина, катионных белков, эффектом кислых и ней­тральных  гидролаз на фагоцитированные  бактерии.

Нейтрофильный гранулопоэз в костном мозге представлен одно­временно пролиферирующими и созревающими клетками — от ми-елобластов до миелоцитов включительно, и только созревающими клетками — от метамиелоцитов до сегментоядерных нейтрофилов (рис. 6.3.). Зрелые сегментоядерные нейтрофилы поступают из кост­ного мозга в кровь и составляют в ней до 50- 70 % всех лейко­цитов. В небольшом количестве (1-5%) в кровь поступают и палочкоядерные нейтрофилы. Их увеличение в крови — важный признак нарастания интенсивности нейтрофильного гранулопоэза. Одновре­менно это признак остроты воспалительного процесса. Поэтому он имеет диагностическое  значение.

Рис.6.3. Развитие нейтрофильных гранулоцитов.*КОЕ-Г — колониеобразующая единица гранулоцитарная.

В костном мозге находится в 20-25 раз большее количество зре­лых сегментоядерных нейтрофилов, чем в крови. Из этого костно­мозгового резерва образуются циркулирующие гранулоциты. Гранулоцитарный колониестимулирующий фактор (КСФ-Г), бактериаль­ный эндотоксин и др. вызывают выброс резервных гранулоцитов в кровь. После выхода в кровь, часть гранулоцитов циркулирует в ней, а часть оседает у сосудистой стенки малых вен и капилляров, образуя пристеночный нециркулирующий резерв (при подсчете гра­нулоцитов в периферической крови определяется только их цирку­лирующая часть). Повышенная секреция в кровь адреналина, КСФ-Г вызывают быстрое перемещение пристеночных гранулоцитов в циркулирующую кровь. Пристеночный резерв равен 0,17+0,08 • 109 нейтрофилов/кг массы, циркулирующий — 0,22±0,05 • 109 /кг массы тела. Средний полупериод жизни циркулирующих гранулоцитов со­ставляет  6- 8  часов,  а  полный  —  не  более  30  часов.

Функцией базофильных гра­нулоцитов крови и тканей (к последним относят и тучные клетки) является поддержание кровотока в мелких сосудах и трофики тка­ней, поддержание роста новых капилляров, обеспечение миграции других лейкоцитов в ткани. Базофильные гранулоциты способны к фагоцитозу, миграции из кровяного русла в ткани и передвижению в них. Базофильные лейкоциты участвуют в формировании аллерги­ческих  реакций  немедленного типа.

Цитоплазмы зрелых базофилов содержат гранулы неравных разме­ров, окрашивающихся в фиолетоворозовые тона при окраске по Романовскому-Гимза. Базофилы могут синтезировать и накапливать в гранулах биологически активные вещества, очиoая от них ткани, а затем и секретировать их.

Постоянно присутствуют в клетке:

а) Кислые глюкозаминогликаны (ГАГ) — хондриотинсульфат, дерматансульфат, гепарансульфат и гепарин — основной антикоагуляционный фактор; б) Гистамин —антагонист гепарина, укорачивающий время кровотечения, активатор внутрисосудистого тромбообразования. Гис­тамин стимулирует фагоцитоз, оказывает прововоспалительное дей­ствие на ткань.

Каждый базофил содержит:

а) 1-2 пикограмма гистамина, б) «фактор, активирующий тромбоциты» — вещество, вызывающее агрегацию тромбоцитов и освобождение их содержимо­го,

в) «эозинофитьный хемотаксический фактор анафилаксии», вы­зывающий выход эозинофилов из сосудов в места скопления базо­филов.

При сенсибилизации организма, т.е. повышенной чувстви­тельности его к аллергенам, в базофилах образуется, так называемая «медленно реагирующая субстанция анафилаксии», вызывающая спазм гладкой   мускулатуры.

Основными хемотаксическими факторами, определяющими направ­ление движения базофилов, являются лимфокины, секретируемые лимфоцитами в присутствии аллергена, калликриин, фактор компле­мента С567. Базофилы, тучные клетки окружают мелкие сосуды пе­чени и легких, секретируя гепарин и гистамин, что поддерживает нормальный кровоток в сосудах, т.к. в этих тканях могут форми­роваться эмболические тромбы, благодаря медленному течению ве­нозной крови, а в легких — благодаря повышенной концентрации тромбоцитов. Базофилы оказывают эффекты, благодаря дегрануля-ции, т.е. выбросу содержимого гранул во внеклеточную среду. Мощ­ными активаторами их дегрануляции являются иммуноглобулин Е и взаимодействующие с ним аллергены — вещества антигенной при­роды,  вызывающие  сенсибилизацию  организма. Базофильные гранулоциты и тучные клетки имеют общую КОЕ. Это дает основание рассматривать тучные клетки как тканевые формы базофилов. В лейкоцитарной формуле содержится 0,25-0,75% базофилов  или  около  0,04 • 109/л  крови.

Функции эозинофильных лейкоцитов направлены на защиту организма от паразитарной ин­фекции гельминтами (шистосом, трихинел, аскарид и др.). Эозинофилы уменьшают концентрацию биологически активных соединений, возникающих при развитии аллергических реакций. Эозинофилы являются антагонистами тучных клеток и базофилов благодаря сек­реции веществ, предупреждающих длительное действие биологически активных веществ этих клеток. Эозинофилы обладают фагоцитарной и бактерицидной активностью. Для зрелого эозинофила характер­но 2-х или 3-х дольчатое ядро и два типа гранул в цитоплаз­ме. Большие гранулы содержат специфический основной белок (MB 11000), обладающий свойством нейтрализовать биологичес­ки активные веoества — гепарин, медиаторы воспаления, а также ряд ферментов — B-глюкоуронидазу, рибонуклеазу, фос-фолипазу Д и др. Последняя инактивирует «фактор активи­рующий тромбоциты», секретируемый базофилами, предупреждая агрегацию тромбоцитов. Маленькие гранулы содержат кислую фосфатазу и арилсульфатазу В, нейтрализующую «медленно ре­агирующую  анафилактическую   субстанцию».

Для эозинофилов мощным хемотаксическим фактором является «эозинофильный хемотаксический фактор анафилаксии», кислый пеп­тид (MB 500), секретируемый тучными клетками и базофилами. Его секреция обуславливает выход эозинофилов в места скопления туч­ных клеток и базофилов. Хемотаксическими эффектами в отноше­нии эозинофилов обладают фрагменты молекул комплемента С3a, C5aи С567, хемотаксис эозинофилов усиливают гистамин и секрет лим­фоцитов, активированных паразитарным антигеном. Хемотаксис по­зволяет эозинофилам, взаимодействуя с другими клетками крови и иммунными механизмами, участвовать в антипаразитарной защите организма. Например, препятствовать шистосоматозу — широко распространенному в тропиках гельминтозу. Эозинофилы фиксируются на поверхности шистосомулы (ювенильная форма паразита), содер­жимое гранул эозинофилов повреждает поверхностные структуры паразита и эозинофилы мигрируют в его интерстициальную ткань, вызывая  гибель  шистосомулы.

При аллергических заболеваниях человека эозинофилы накаплива­ются в тканях, участвующих в аллергических реакциях (перибронхиальная ткань легких при бронхиальной астме и др.) и нейтрализуют, образующиеся в ходе этих реакций, биологически активные соеди­нения — гистамин, «медленно реагирующую субстанцию анафилак­сии», «фактор, активирующий тромбоциты», тормозят секрецию гистамина тучными клетками и базофилами. Подобно нейтрофильным лейкоцитам, эозинофильная серия лейкоцитов представлена в кост­ном   мозге   пулом   пролиферирующих   и   созревающих   клеток   —   от эозинофильного миелобласта до миелоцита, и пулом созревающих клеток, начиная от мета миелоцита. Продолжительность развития первого  составляет  5,5 дней,  второго  —  2,5 дня.

В крови человека содержится 2-4% эозинофилов или 0,15— 0,25 • 109/л крови. Увеличение их количества называется эозинофилией и свидетельствует о возможной паразитарной инфек­ции или аллергическом заболевании. Для эозинофилов человека ха­рактерно накопление их в тканях, контактирующих с внешней сре­дой — в легких, желудочно-кишечном тракте, коже, урогенитальном тракте. Их количество в этих тканях в 100-300 раз превышает со­держание  в крови.

Моноциты-макрофаги (система фагоцитирующих мононуклеаров) обеспечивают фагоцитарную защи­ту организма против микробной инфекции. Образующиеся в макро­фагах продукты метаболизма токсичны для многих паразитов чело­века. Макрофаги участвуют в формировании иммунного ответа ор­ганизма и воспаления, усиливают регенерацию тканей и противо­опухолевую защиту, участвуют в регуляции гемопоэза. Макрофаги фагоцитируют старые  и поврежденные  клетки  крови.

В мазках, окрашенных по Романовскому- Гимза, моноциты имеют диаметр от 20 до 50мю, объемное почковидное ядро, сдвинутое к периферии клетки, и цитоплазму сероголубого цвета. При эволю­ции моноцита в макрофаг увеличивается диаметр клетки, число лизосом и количество содержащихся в них ферментов. Для моно­цитов-макрофагов характерен активный аэробный гликолиз, обеспе­чивающий энергией его фагоцитарную активность, но они испо­льзуют для генерации энергии и гликолитический путь. Это позво­ляет большинству макрофагов функционировать даже в анаэробных условиях (например, в полости абсцесса (полость, заполненная гно­ем). Способность макрофагов распознавать микроорганизмы, повреж­денные клетки, медиаторы, гормоны, лимфокины и др. связана со свойствами их плазменной мембраны, рецепторы которой и взаимо­действуют  с   этими  лигандами.

Свойства макрофагов поражать другие клетки (цитотоксические свойства) связана с активацией в них оксидативного метаболизма и гексозного монофосфатного шунта, в ходе которых образуются ре­активные кислородные посредники, оксиданты, такие как суперок­сид, перекись водорода, гидроксильный радикал и др., разрушающие опухолевые клетки, поражающие токсоплазмы (кокцидии, паразити­ческие простейшие, вызывающие болезнь у человека), лейшмании (простейшие, вызывающие у человека заболевания — лейшманиозы), возбудители  малярии.

Макрофаги человека секретируют более 100 биологически актив­ных веществ с молекулярной массой от 32 (анион супероксида) до 440000 (фибронектин). Так, макрофаги секретируют интерлейкин-1, стимулирующий пролиферацию остеобластов и лимфоцитов, продук­цию фибробластами КСФ-ГМ. Макрофаги секретируют вещества, активирующие фибробласты и эндотелиальные клетки и стимулирующие их деление, а также КСФ-ГМ, КСФ-Г, эритропоэтин, простягландины, лейкотриены В, U, С, Д, Е, тромбоксан, что делает возможным их участие в регуляции гемопоэза, механизмов воспале­ния и др. Моноциты-макрофаги секретируют фактор, вызывающий некроз опухоли (кахексии), обладающий цитотоксическим и цито-статическим эффектами на опухолевые клетки. Секретируемые мак­рофагами интерлейкин-1 и кахектин воздействуют на терморегуляторные  центры  гипоталамуса,   повышая температуру  тела.

Моноциты образуются в костном мозге, где их клетка-предше­ственница КОЕ-М (колониеобразующая единица моноцитарная) дифференцируется до монобласта, последний совершает одно деле­ние и формирует два промоноцита, каждый из которых, в свою очередь, образует два моноцита. Моноциты мигрируют из костного мозга в циркулирующую кровь и распределяются на циркулирующий и краевой пулы. Далее моноциты из крови мигрируют к тканям и полостям тела, где и дифференцируются в соответствующие ткане­вые   макрофаги.

У человека время формирования промоноцита занимает от 38 до 48 часов. Общее число моноцитов в костном мозге взрослого че­ловека — 7,3 • 109 клеток, они пребывают в костном мозге не более 24 часов после деления промоноцита. Общее же число циркулиру­ющих в крови человека моноцитов оценивается в 1,7- 109 клеток, а их краевой пул достигает почти 75%. Выход моноцитов из крови в ткани составляет 1,6 • 107 клеток в час. Средний полупериод их пребывания в крови колеблется от 36 до 104 часов. Продолжитель­ность жизни моноцитов- макрофагов в тканях человека составляет не менее 3 недель. У взрослого человека количество моноцитов достигает 1-9 % всех лейкоцитов крови, а в 1 мкл крови 300-700. Под моноцитозом понимают увеличение абсолютного их количества свыше   800  клеток/мкл.

Стимулирующие эффекты на гранулоцитопоэз оказывают особые вещества — гранулоцитарные колониестимулирующие факторы (КСФ-Г), образующиеся в моно­цитах, макрофагах и Т- лимфоцитах. Угнетающие эффекты на гра­нулоцитопоэз оказывают кейлоны (тканевоспецифические ингибито­ры), которые секретируются зрелыми нейтрофилами. Кейлоны — это низкомолекулярные соединения, угнетающие синтез ДНК в клетках-предшественницах гранулоцитарных ростков костного мозга. Зрелые нейтрофилы ограничивают также воспроизводство новых нейтрофильных лейкоцитов, продуцируя лактоферрин, угнетающий секре­цию КСФ- Г. Простагландины серии Е, образуемые моноцитами и макрофагами, также угнетают гранулоцитопоэз. Продукция моноци­тов, также как и гранулоцитов, регулируется балансом стимулиру­ющих и угнетающих факторов. Стимулирует моноцитопоэз моноци-тарный колониестимулируюший фактор (КСФ-М), тормозят образо­вание моноцитов простагландины серии Е, а- и В-интерфероны. Продукцию стимулирующих моноцитопоэз КСФ ослабляет лакто­феррин, высвобождаемый нейтрофилами. Большие дозы гидрокортизона препятствуют выходу моноцитов из костного мозга в кровь, хотя пролиферация моноцитов в костном мозге и сохраняется. Вследствие этого резко снижается содержание моноцитов-макрофа­гов в крови и тканях. Возбуждение а-адренорецепторов КОЕ-ГМ катехоламинами  стимулирует пролиферацию  моноцитов.

doctor-v.ru

Лейкоциты - Функции лейкоцитов - Клетки крови - виды, строение, функции

Основную массу лейкоцитов составляют нейтрофильные гранулоциты. Зрелые клетки этого ряда — сегментоядерные нейтрофильные гранулоциты — подвижные, высокодифференцированные и высокоспециализированные клетки крови, которые тонко реагируют на функциональные и органические изменения в организме, выполняя фагоцитарную и бактерицидную функции.

Общее количество зрелых и созревающих клеток нейтрофильного ряда в костном мозге составляет 61,6-1010, а количество нейтрофильных гранулоцитов в периферической крови в среднем равно 2,3-1010 клеток, т. е. почти в 30 раз меньше, чем в костном мозге.

В физиологических условиях нейтрофильные гранулоциты в кровяном русле распределяются на две приблизительно равные части — пристеночный (маргинальный) пул и центральный, находящийся в центре кровотока. При эмоциональном напряжении, после приема пищи, введения ряда гормонов (катехоламинов, гликокортикостероидов, этиохолоналона и др.) происходит перераспределительный лейкодитоз, т. е. лейкоциты из маргинального пула поступают в центральный.

Продолжительность жизни нейтрофильных гранулоцитов в среднем 14 дней, из них пять-шесть дней они созревают и задерживаются в синусах костного мозга, от 30 мин до двух дней циркулируют в периферической крови, шесть-семь дней находятся в тканях, откуда они уже не возвращаются а кровяное русло. Установлено, что при полном прекращении процессов пролиферации костный мозг способен поддерживать количество нейтрофильных гранулоцитов в периферической крови на нормальном уровне в течение шести дней.

Важнейшие функции нейтрофильных гранулоцитов - способность к фагоцитозу и выработке ряда ферментов, оказывающих бактерицидное действие, а также их способность проходить через базальные мембраны, между клетками и перемещаться по основному веществу соединительной ткани.

Как фагоцитоз, так и движение гранулоцитов — активные процессы, сопряженные с энергетическими затратами, которые обеспечиваются благодаря запасам гликогена в организме и наличию гликолитических ферментов в этих клетках. Фагоцитоз нейтрофильных гранулоцитов является их специфической функцией и осуществляется лишь при созревании клеток.

Миелобласты практически не проявляют фагоцитарной активности. Для промиелоцитов показатель фагоцитарной активности приближается к 10,8%, а в более зрелых формах — миелоцитах — он в четыре раза выше. Показатель фагоцитарной активности нейтрофильных мета миелоцитов равен 67 %, что приближается к цифрам, свойственным палочкоядерным и зрелым сегментоядерным нейтрофильным гранулоцитам. При инволюции зрелых нейтрофильных гранулоцитов способность к фагоцитозу почти исчезает, По имеющимся данным, фагоцитарная активность зрелых лейкоцитов здоровых людей составляет в среднем 86 %.

Нейтрофильные гранулоциты обладают высокой метаболической активностью. Их специфическая зернистость содержит около 35 различных ферментов, способных разрушать основные классы биологических соединений. Предполагается, что высвобождение лизосомальных ферментов в окружающую среду происходит при повышении проницаемости лизосомальной мембраны, разрушении и гибели клетки или в процессе фагоцитоза. Рядом экспериментальных работ показано, что вещества, выделяемые гранулоцитами в процессе жизнедеятельности иди при разрушении, обладают широким спектром действия. Некоторые из них усиливают митотическую и двигательную активность клеток, улучшают регенеративные процессы в тканях.

Биологическое значение нейтрофильных гранулоцитов заключается в том, что они доставляют в очаг воспаления большое количество разнообразных протеолитических ферментов, играющих важную роль в процессе рассасывания некротических тканей. Многочисленными исследованиями доказана также способность продуктов распада нейтрофильных гранулоцитов стимулировать лейкоциттпоэз и видывать усиленную пролиферацию и дифференциацию гранулоцитарных элементов и костном мозге. Кроме того, циркулирующие в крови продукты распада лейкоцитов могут оказывать влияние на высвобождение зрелых гранулоцитов из костного мозга

Исследования последних лет показали, что гранулоциты могут также выделять в кровь вещества, обладающие бактериальными и антитоксическими свойствами, а также пирогенные вещества, вызывающие лихорадку, и вещества, поддерживающие воспалительный процесс.

При изучении аллергических реакций большое внимание уделяется сегментоядерным нейтрофильным гранулоцитам. С помощью современных методик исследования установлено, что нейтрофильные гранулоциты не вырабатывают антитела, но, адсорбируя их в своей оболочке, могут доставлять к очагам инфекции. Кроме того, захватывая антиген с антителом, они переваривают весь комплекс, а сами подвергаются альтерации с последующим лизисом и высвобождением биологически активных веществ, резко повышающих проницаемость стенок сосудов.

В нейтрофильных гранулоцитах обнаружены вещества, обладающие тромбопластиновой активностью, а наличие в них катепсинов и трипсина Способствует участию в процессах фибринолиза.

Эозинофильные гранулоциты

Эозинофильные гранулоциты содержатся в периферической крови в небольшом количестве. В крупной и обильной зернистости их цитоплазмы содержатся белки, липиды, фосфор, железо, гистамин, РНК, а также ферменты, участвующие в окислительно-восстановительных и иммунных процессах.

Зернистость эозинофильных гранулоцитов устойчива к аутолитическим ферментам, трипсину, но растворяется в концентрированных кислотах и щелочах. Считается, что она представляет собой цитоплазматические вакуоли, содержащие кристаллоидные вещества митохондриального происхождения.

Основные функции эозинофильных гранулоцитов осуществляются не в кровяном русле, а в тканях.

Эозинофильные гранулоциты довольно подвижны и, покидая ток крови, образуют скопления в тканях и органах. Они обладают также фагоцитарной активностью, которая выражена значительно слабее, чем у нейтрофильных гранулоцитов.

Участие эозинофильных гранулоцитов в иммунных реакциях заключается в том, что они предотвращают генерализацию иммунного ответа, ограничивая иммунную реакцию организма местным процессом на уровне подслизистого или подэпителиального слоя. Эозинофильные гранулоциты подавляют реакцию гиперчувствительного немедленного типа, выделяя для этого целый ряд инактивирующих ферментов (гистаминазу, арилсульфатазу B, фосфолипазу D, простагландины E1 и E2 и др.). Участие эозинофильных гранулоцитов в развитии иммунитета при гельминтозах заключается в киллерном (цитотоксическом) эффекте этих клеток, поэтому гиперэозинофилию при гельминтозах следует рассматривать как защитную реакцию.

Базофильные гранулоциты

Базофильные гранулоциты обнаруживаются при подсчете лейкограммы не у всех обследованных.

Гранулы базофильных гранулоцитов растворимы в воде, содержат жиры и ферменты — пероксидазу и оксидазу, а также гепарин и гистамин, участвуют в образовании серотонина. Учитывая, что базофильные гранулоциты содержат активные медиаторы сосудистых реакций и процессов гемокоагуляции, регуляторов сосудистого тонуса, исследование их имеет диагностическое значение при геморрагическом диатезе, аллергических заболеваниях, нарушениях сосудистой проницаемости различного происхождения.

Моноциты

Моноциты — довольно многочисленные клетки периферической крови, обладающие высокой метаболической активностью. В их цитоплазме обнаруживаются липаза, протеолитические ферменты, пероксидазы, карбоангидраза, РНК. С помощью цитохимических реакций выявляются гликоген, липиды, фосфолипиды. Специфическим ферментом моноцитов, как и макрофагов, является α-нафтилацетатэстераза, подавляемая фторидом натрия.

Благодаря высокому содержанию липазы моноциты-макрофаги активно действуют на микроорганизмы с липидной оболочкой. Способность моноцитов к самостоятельному амебоидному движению, к фагоцитозу остатков клеток, мелких инородных тел, малярийных плазмодиев, микобактерий туберкулеза определяет роль этих клеток в компенсаторных и защитных реакциях организма. Моноциты находятся в крови до трех суток, способны к рециркуляции и свободно обмениваются с большим внесосудистым пулом (главным образом, в селезенке и легких), который в 25 раз превышает количество моноцитов в крови.

Лимфоциты

Лимфоциты довольно быстро передвигаются и обладают способностью проникать в другие ткани, где могут находиться длительное время. Они являются центральным звеном в специфических иммунологических реакциях как предшественники антителообразующих клеток и как носители иммунологической памяти.

Лимфоциты принимают участие в реакциях отторжения трансплантата и местных аллергических реакциях. Существует точка зрения, что в организме лимфоциты передают клеткам информацию, поддерживающую функцию и постоянный уровень дифференциации клеток тканей, осуществляют трофические и репаративные процессы, участвуют в выведении токсических продуктов белкового обмена. Имеются также данные о защитной роли лимфоцитов при опухолевом процессе, однако эти вопросы еще подлежат дальнейшему изучению.

Согласно современным данным, лимфоциты, циркулирующие в крови, выполняют различные функции. Большинство их относится к T-лимфоцитам (тимусзависимым) —50—70 %, меньшую часть составляют B-лимфоциты— 15—25 %.

T-лимфоциты участвуют главным образом в реакциях клеточного, а B-лимфоциты — гуморального иммунитета. Морфологически T- и B-лимфоциты у человека неразличимы. В последнее годы разработаны методы, позволяющие отличать T- и B-лимфоциты по ряду признаков. Так, для T-лимфоцитов характерны реакции спонтанного розеткообразования с эритроцитами барана и бласттрансформации в присутствии фитогемагглютининов (ФГА), высокая электрофоретическая подвижность. B-лимфоциты характеризуются наличием иммуноглобулиновых рецепторов на поверхности клеток, низкой электрофоретической подвижностью, способностью синтезировать антитела.

T-лимфоциты

В зависимости от участия в иммунологической реакции T-лимфоциты делят на четыре группы:

Таким образом, T-лимфоциты в функциональном отношении представляют собой неоднородную группу клеток, хотя и имеют общего предшественника. Предшественники T-лимфоцитов, попадая в корковое вещество вилочковой железы, быстро размножаются и превращаются в тимоциты. Созревая, тимоциты проходят стадии развития T1-лимфоцитов, T2-лимфоцитов и, наконец, зрелых лимфоцитов.

Общим для всех Т-лимфоцитов является наличие на их поверхности тимусного человеческого лимфоцитарного антигена (THLA или OKT 1, или Leu-1). Этот T-антиген обнаруживается на всех тимоцитах, а в периферической крови — на 50—90 % лимфоцитов.

На ранних стадиях созревания T-лимфоцитов появляются специфические антигены OKT10, OKT9 и целый ряд других антигенов, которые исчезают по мере созревания лимфоцитов и выхода их из тимуса в периферическую кровь. Часть T-лимфоцитов обладает высокой скоростью миграции, и отличие от B-лимфоцитов. Другая часть — оседлая, находится постоянно в периферических лимфатических органах.

B-лимфоциты

B-лимфоциты развиваются из костномозговых предшественников. В процессе созревания они проходя г стадию пре-преB-лимфоцита, не имеющего рецепторов к иммуноглобулинам, стадию нреИ-лимфоцита, имеющего в цитоплазме тяжелые μ-цепи, и стадию раннего B-лимфоцита, имеющего на мембране клетки IgM. Дальнейшее созревание B-лимфоцитов происходит в периферической крови.

В В-лимфоцитах всех степеней зрелости обнаруживается Ia-подобный антиген (HLA-DR2 и HLA-DR3), который играет важную роль во взаимоотношении клеток. Концентрация Ia-антигена постепенно снижается вплоть до полного исчезновения в плазматических клетках.

Дифференцировка B-лимфоцитов как антигенозависнмых клеток происходит в зародышевых центрах фолликулов периферических лимфатических органов, которые появляются сразу после рождения. Это преимущественно оседлые клетки, мигрирующие значительно меньше T-лимфоцитов. В функциональном отношении B-лимфоциты также представляют собой неоднородную группу клеток. Среди них есть антителопродуценты (продуцирующие иммуноглобулины) — наиболее многочисленная группа, а также киллеры, супрессоры и клетки иммунологической памяти.

Клетки-киллеры естественные

Клетки-киллеры естественные (нулевые клетки) составляют в периферической крови 5—10 % общего числа лимфоцитов. Это клетки, не имеющие T- и B-маркеров. Предполагается, что эта группа включает стволовые клетки костного мозга, ранние предшественники T- и B-лимфоцитов.

Цитохимическими и биохимическими исследованиями установлено, что лимфоциты содержат катепсин, нуклеазу, амилазу, липазу, нейтральную неспецифическую эстеразу, β-глюкуронидазу, кислую фосфатазу, сукцинатдегидрогеназу, цитохромоксидазу, аргинин, гистидин, гликоген.

Для лимфоцитов характерен высокий обмен РНК и белков. T-лимфоциты, в отличие от B-лимфоцитов, содержат аденозиндезаминазу и пуриннуклеозидфосфорилазу.

Плазматические клетки

Плазматические клетки активно участвуют в синтезе и секреции белка. Нормальное количество плазматических клеток в пунктате грудины не превышает 0,25—0,8 % общего количества миелокариоцитов. При некоторых патологических процессах (хроническом гнойном воспалении, туберкулезе, висцеральном сифилисе, раке почки), отличающихся длительностью течения количество плазматических клеток в костном мозге может составить 6— 8 %.

При агранулоцитозе, гипопластической анемии в костном мозге можно наблюдать не только увеличение количества плазматических клеток, но и появление многоядерных клеток.

medicalhandbook.ru


Смотрите также