Зрелый эритроцит человека


Физиология эритроцитов

Эритроциты, или красные кровяные тельца, имеют разную форму и величину. В связи с этим они носят соответствующее название:

· Нормоциты - диаметр - 7,5 мкм

· стоматоциты, дискоциты, эхиноциты, микроциты (их диаметр меньше 7,2 мкм);

· мегалоциты (диаметр больше 9,5 мкм);

Из красного костного мозга в кровь поступают преимущественно незрелые эритроциты — ретикулоциты. Они (в отличие от зрелых эритроцитов) содержат рибосомы, митохондрии и комплекс Гольджи. Окончательная дифференцировка в эритроциты происходит в течение 24–48 часов после выхода ретикулоцитов в кровоток. Количество поступающих в кровоток ретикулоцитов в норме равно количеству удаляемых эритроцитов. Ретикулоциты составляют около 1% всех циркулирующих красных клеток крови. Эритроциты — безъядерные клетки диаметром 7–8 мкм (нормоциты). Количество эритроцитов: у женщин — 3,9–4,9 ×1012/л, у мужчин — 4,0–5,2×1012/л. Более высокое содержание эритроцитов у мужчин обусловлено стимулирующим эритропоэз влиянием андрогенов. Продолжительность жизни (время циркуляции в крови) — 100–120 дней.

В крови взрослого человека находятся преимущественно нормоциты, они наиболее приспособлены для выполнения основной функции – транспорта кислорода и углекислого газа:

· Общее количество (во всей крови) около 25 триллионов

· Форма - двояковогнутый диск

· Толщина - 2 мкм

· Диаметр - 7,5 мкм.

· Площадь поверхности – 145 мкм2

· Объем - 86 мкм3

Рис. 3. Кривая нормального распределения эритроцитов по диаметру (Прайс-Джонса):

Сплошная линия – у здорового человека,

Пунктирная – у больного пернициозной анемией

Установлено, что в большинстве случаев в крови находятся эритроциты, имеющие диаметр 7,5 – 8,3 мкм. Значения их диаметров образуют кривую нормального распределения - кривую Прайс-Джонса (рис. 3), изменение формы которой позволяет установить наличие и количество эритроцитов с размерами, отличающимися от нормальных.

Эритроцит, как любая клетка, окружен плазматической мембраной, структура которой мало отличается от таковой других клеток. Наружный слой мембраны содержит набор антигенов, в том числе антигены АВО, резус и другие. Мембрана эритроцита проницаема для катионов Na+ и К+. Особен6но хорошо она пропускает О2, СО2, Cl- и НСО3-.

Особенности эритроцитов

Морфологические Функциональные
· Отсутствие ядра   · Большое общее количество эритроцитов (Э) · Двояковогнутая форма Э · Увеличивает объем переносимого О2   · Увеличивает общую диффузионную поверхность   · Увеличивает диффузионную поверхность, меняя соотношение поверхность/объем, уменьшает диффузионное расстояние; обеспечивает прохождение Э через капилляр

К важным свойствам эритроцита также относится большая способность к обратимой деформации. Проходя через узкие изогнутые капилляры, эритроциты деформируются, меняют ориентацию (рис. 4).

Рис. 4. Деформация эритроцитов в капилляре в случае, когда его диаметр меньше диаметра эритроцитов.

Вследствие пластичности эритроцитов относительная вязкость крови в мелких сосудах значительно меньше, чем в сосудах с диаметром более 7,5 мкм. Такая пластичность эритроцитов зависит, главным образом, от баланса фосфолипидов и холестерина мембраны, а также от отсутствия цитоскелета (трубочек и микрофиламентов) в эритроцитах.

По мере старения эритроцит становится более жестким. Кроме того, эластичность уменьшается при патологии форм (серповидные эритроциты, сфероциты) и изменении свойств гемоглобина (наследственные гемоглобинопатии).

В условиях патологии количество эритроцитов может увеличиваться (эритроцитоз) или уменьшаться (эритропении).

Основным фактором, стимулирующим направление роста кровеобразующих клеток по эритроидному пути, является гормон эритропоэтин. Этот гормон образуется в почках под действием кислородной недостаточности – гипоксии (рис.5).

Рис. 5 Факторы, стимулирующие эритропоэз

ГЕМОГЛОБИН

Основные функции эритроцитов обусловлены наличием в их составе гемоглобина (Hb).Молекула Hb — тетрамер, состоящий из 4 субъединиц — полипептидных цепей глобина, каждая из которых ковалентно связана с одной молекулой гема. Гем построен из 4 молекул пиррола, образующих порфириновое кольцо, в центре которого находится атом железа (Fe2+). Основная функция Hb — перенос O2. Существует несколько типов Hb, образующихся на разных сроках развития организма, различающихся строением глобиновых цепей и сродством к кислороду.

Глобин у всех животных и человека разный. Он состоит из 4 цепей – доменов. Например, гемоглобин Fсостоит из двух α-цепей и двух γ- цепей, гемоглобин А из двух α-цепей и двух β-цепей, а гемоглобин А2 – из двух α-цепей и двух σ-цепей. Каждая цепь отличается друг от друга количеством аминокислотных остатков. Всего глобин содержит 574 аминокислотных остатков.

В процессе онтогенеза характер цепей, образующих молекулу гемоглобина, меняется, это лежит в основе образования новых видов (форм) гемоглобина.

Виды гемоглобина

Примитивный HbP У эмбриона
Фетальный HbF У плода
Взрослый HbA, HbA2 После рождения
Миоглобин Мb  

В крови взрослого человека содержится, главным образом, HbA (95 - 98%), незначительное количество HbA2 (1 - 2%) и иногда HbF (до 1%). Особой формой является миоглобин, содержащийся в мышечной ткани.

Все виды гемоглобина обладают способностью образовывать соединения с О2, СО2, СО и сильными окислителями типа ферроционида, бертолетовой солью, перекисью водорода и др.

megaobuchalka.ru

Большая Энциклопедия Нефти и Газа

Cтраница 1

Зрелые эритроциты не люминесцируют; в ретикулоцитах отмечается светящаяся красным зернистость. Желто-оранжевым светом люминесцируют кровяные пластинки.  [1]

Интересно отметить, что фенилгидразин вызывает гемолиз зрелых эритроцитов и может быть широко использован для лечения полицитемии; однако действие фенилгидразина, повидимому, является специфическим и не свойственно самому гидразину.  [2]

В управлении сложным процессом дифференцировки стволовых клеток костного мозга в направлении формирования зрелых эритроцитов участвует специальный белок эритропоэтин. Те же стволовые клетки дифференцируются в направлении формирования клеток иммунной системы при участии группы белков, известных под общим названием интерлейкины. Например, интерлейкин-2 стимулирует конечные фазы дифференцировки В - и Т - лимфоцитов при иммунном ответе организма на появление чужеродных антигенов.  [3]

Ядра имеются во всех эукариотических клетках, за исключением зрелых члеников ситовидных трубок флоэмы и зрелых эритроцитов млекопитающих. У некоторых протистов, в частности у Paramecium, имеется два ядра - микронуклеус и макронуклеус.  [4]

Анаэробный распад глюкозы ( гликолиз) функционирует в тканях, в клетках которых отсутствуют митохондрии ( зрелые эритроциты человека), и в анаэробных условиях. Конкретные реакции от глюкозы до пирувата совпадают с аэробным распадом глюкозы. Следовательно, в анаэробных условиях образуются: 2 молекулы пирувата, 2 молекулы восстановленного НАД Н и 4 молекулы АТФ. Однако в анаэробных условиях нет акцептора электронов в митохондриях, т.е. О2, поэтому пируват и НАДН не переносятся в митохондрии. В цитозоле сам пиру-ват принимает водород от восстановленного НАДН Н и восстанавливается в молочную кислоту. Реакция обратима и катализируется лак-татдегидрогеназой: пируват НАДН Н - лактат. Именно поэтому в гликолизе выделяют центральную реакцию - гликолитическую ок-сидоредукцию. В центральной окислительно-восстановительной реакции гликолиза НАД выполняет роль промежутрчнрго переносчика водорода от 3-фосфоглицеринового альдегида на пируват в цитозоле.  [5]

Включению железа в клетку предшествует связывание трансферрина специфическими мембранными рецепторами, при утрате которых, как, например, у зрелых эритроцитов, клетка теряет способность поглощать этот элемент. Количество железа, поступающего в клетку, прямо пропорционально числу мембранных рецепторов. Рецепторы трансферрина, выделенные из ретикулоцитов, плаценты человека, Т - лимфоцитов, культуры фибробластов, опухолевых клеток являются гликопротеидами, образованными двумя субъединицами с молекулярной массой около 90000 каждая. Используя флюоресцентную метку, удалось показать, что трансферрин, связанный рецептором, поступает внутрь клетки путем эндоцитоза, где он обнаруживается в лизосомной фракции. В клетке происходит высвобождение железа из трансферрина, чему способствует, по-видимому, кислая среда. Затем апотрансферрин возвращается в циркуляцию. Повышение потребности клеток в железе при их быстром росте или синтезе гемоглобина ведет к индукции биосинтеза рецепторов трансферрина и, напротив, при повышении запасов железа в клетке число рецепторов на ее поверхности снижается.  [6]

Очевидно, каждая из этих колоний порождена клеткой-предшественницей ( колониеобразующей единицей эритроидного ряда, КОЕ-Э), которая обладала высокой чувствительностью к эритропоэтину; из таких клеток зрелые эритроциты получаются через шесть или менее циклов деления. Число таких клеток-предшественниц в материале костного мозга, отбираемом для культуры, зависит от концентрации эритропоэтина, имевшейся у интактного животного перед взятием пробы. Если у животного был аномально повышенный уровень эритропоэтина в крова то в его костном мозге находят необычно большое число КОЕ-Э, дающих эритроидные колонии в культуре. Поэтому можно думать, что КОЕ-Э костного мозга сами происходят от более раннего типа клеток-предшественниц, пролиферация которых также стимулируется эритропоэтином.  [7]

В организме человека образуется 160 млн эритроцитов в минуту; они циркулируют в крови 110 - 120 дней и затем разрушаются. Зрелые эритроциты - это безъядерные клетки, не содержащие мРНК, рибосом и митохондрий; основным энергетическим процессом в них является гликолиз. В зрелом эритроците активен пентозофосфатный путь, в процессе которого происходит восстановление НАДФН. Синтез гемоглобина происходит в процессе развития эритроцитов из стволовых клеток костного мозга, на стадии образования незрелой безъядерной красной клетки - ретикулоцита, которая поступает в кровь. Ретикулоциты содержат много глобиновой мРНК и активно синтезируют гемоглобин, пока клетка в процессе созревания не превращается в эритроцит, утрачивающий мРНК, рибосомы и митохондрии. В результате зрелый эритроцит обладает упрощенным метаболизмом, нацеленным на сохранение целостности мембраны и предотвращение окисления гемоглобина. Эритропо-эз стимулируется белком эритропоэтином, вырабатываемым в мозговом слое почек.  [8]

У человека в 1 мкл крови содержится 5 10б эритроцитов ( красные кровяные клетки), которые образуются в костном мозге. Зрелые эритроциты человека и других млекопитающих лишены ядра и почти целиком заполнены гемоглобином.  [9]

Первичная структура а - и не а-глобиновых генов человека известна. Для каждого из них установлено наличие двух нитронов ( отрезков ДНК, прерывающих кодирующие участки-экзоны) и больших некодирующих участков, находящихся на флангах генов. Биосинтез гема, ос - и р-глоби-новых цепей, а также сборка тетрамерных молекул НЬА осуществляется в клетках эритроцитарного ряда и практически завершается к моменту выхода зрелых эритроцитов ( их продолжительность жизни у человека составляет 120 - 130 дней) из костного мозга в кровяное русло.  [10]

Гормон эритропоэтин-это гликопротеин с мол. В свою очередь эритропоэтин стимулирует образование эритроцитов. Поскольку ускоренное поступление новых эритроцитов в кровь отмечается уже через один-два дня после повышения уровня эритропоэтииа в крови, этот гормон должен воздействовать на очень близкие предшественники зрелых эритроцитов. Эти предшественники становятся чувствительными к эритропоэ-тину, когда они уже вступили на путь дифференцировки, ведущей к эритроциту. Поэтому их чувствительность может служить показателем того, насколько далеко эти клетки ушли по данному пути.  [12]

Половые различия компоненты I незначительные. Различна и возрастная динамика этого фактора. Судя по тому, что величина компоненты II закономерно изменяется при переходе от одной возрастной группы к другой, это не случайные ( выборочные) явления, а отражение специфики старения женского организма, касающееся фракции зрелых эритроцитов.  [13]

Половые различия стойкости эритроцитов не имеют удовлетворительного объяснения. Возрастная динамика компоненты II позволяет предположить, что состояние зрелых клеток в определенной мере зависит от гормональных влияний. Отметим, что компонента II находится как бы в тени компоненты I; зрелые клетки испытывают одновременное влияние процессов, связанных с обеими компонентами. Хотя факторный анализ не может вскрыть причины половых различий стойкости зрелых эритроцитов, он делает видимым само их существование.  [14]

Этот вывод подтверждают дальнейшие исследования на тканевых культурах. Для формирования этих колоний требуется семь-десять дней, а не два дня, как для мелких эритроцитарных колоний. ВОЕ-Э отличаются от плюрипотентных стволовых клеток тем, что в ответ на воздействие эритропоэтина они пролиферируют, производя эритроциты. Отличие от КОЕ-Э состоит в том, что для стимуляции ВОЕ-Э нужен более высокий уровень гормона и от зрелых эритроцитов их отделяют 12 клеточных делений. Эти клетки отличаются от КОЕ-Э еще и по размерам, и их можно отделить от последних центрифугированием.  [15]

Страницы:      1    2

www.ngpedia.ru

Лекция 5. Кровь

Кровь, тканевая жидкость и лимфа составляют различные виды внутренней среды организма (рис. 193).

Рис. 193. Виды внутренней среды.

Тканевая жидкость образуется из плазмы крови (20 л/сутки) и обеспечивает обмен веществ клеток. Затем она поступает в кровеносные и лимфатические сосуды.

Лимфа образуется из тканевой жидкости, которая попадает в слепо замкнутые капилляры лимфатической системы (2-4 л/день), по лимфатическим сосудам лимфа направляется в вены большого круга кровообращения. Это дополнительная транспортная система, выполняет также и защитную функцию.

Кровь (около 5л). Разновидность соединительной ткани, состоит из плазмы крови — 55% и форменных элементов — около 45%.

Плазма состоит из неорганических и органических веществ. Неорганические: вода — до 90%, минеральные вещества — 0,9% (ионы Na+, K+, Ca2+, Mg2+, Cl-, h3PO4-, HCO3-). Концентрация солей относительно постоянна, если их мало — плазма становится гипотонической, вода уходит в клетки и увеличивает их объем, если среда гипертоническая — клетки теряют воду, в обоих случаях нарушается их жизнедеятельность.

Органические вещества: белки (альбумины, глобулины, фибриноген и др.) — 7%, жиры — 0,8%, глюкоза — 0,1%. Мочевины около 0,03%, pH — 7,4. Альбумины и глобулины — крупные белковые молекулы, не способные проходить сквозь стенки капилляров. Они участвуют в создании осмотического давления крови, препятствуют избыточному поступлению воды в межклеточное пространство. В плазме находятся гормоны, витамины, растворимые газы, различные ферменты.

Форменные элементы: эритроциты (5 млн./мм3), лейкоциты (4-9 тыс./мм3), тромбоциты (300 тыс./мм3).

Функции крови: дыхательная (транспорт газов); трофическая (транспорт питательных веществ); выделительная (транспорт продуктов обмена к почкам); терморегуляторная (участие в теплоотдаче); защитные (борьба с микроорганизмами, свертывание крови); участие в гуморальной регуляции (транспорт гормонов); гомеостатические функции (поддержание постоянства внутренней среды организма).

Кровь недаром называют «зеркалом здоровья», состав плазмы и количество форменных элементов крови поддерживается на определенном уровне. Изменение содержания в крови сахара, мочевины, количества эритроцитов, лейкоцитов или тромбоцитов, изменение вязкости крови — все это свидетельствует о тех или иных заболеваниях организма.

Эритроциты

Образуются в красном костном мозге (5-10 млн./сек), продолжительность жизни — 3-4 месяца, разрушение (гемолиз) происходит в печени и селезенке.

Строение. Зрелые эритроциты — безъядерные клетки двояковогнутой формы. Клеточная оболочка может содержать агглютиногены А, или В, Rh+ — белок, другие белки. Под оболочкой находится цитоплазма с большим количеством гемоглобина (ядро и другие органоиды клетки у зрелых эритроцитов человека полностью отсутствуют). Диаметр эритроцитов около 7-8 мкм, толщина — 2-2,5 мкм (рис. 194).

Функции. Основные функции эритроцитов связаны с транспортом кислорода в ткани и двуокиси углерода к легким. Гемоглобин — белок, имеющий четвертичную структуру и состоящий из 4 гемов, содержащих Fe2+ и молекулы глобина из четырех полипептидных цепей (2 α-цепи и 2 β-цепи). Гемоглобин легко соединяется с кислородом: Hb+4О2 = Hb(О2)4, это соединение называется оксигемоглобином, соединение Hb с углекислым газом — карбгемоглобином, с угарным газом — карбоксигемоглобином, причем сродство к угарному газу у гемоглобина в 300 раз выше, чем к О2.

Рис. 194. Эритроциты: 1 — мембрана эритроцита; 2 — цитоплазма.

Транспорту газов способствуют небольшие размеры эритроцитов, (чем больше требуется кислорода данному виду млекопитающих для жизнедеятельности, тем меньше размеры эритроцитов); двояковогнутая форма облегчает диффузию газов внутрь клетки и дает возможность деформации клетки при прохождении через капилляры. Количество эритроцитов возрастает, если человек живет высоко в горах. Для образования эритроцитов (эритропоэза) необходим витамин В12; при недостатке кислорода в крови почки вырабатывают эритропоэтин, ускоряющий эритропоэз.

Снижение способности крови переносить кислород называется анемией. Причинами анемии может быть уменьшение числа эритроцитов, количества гемоглобина, недостаток витамина В12 и железа в пищевых продуктах, кровопотеря.

Переливание крови, Rh-фактор.

При переливании крови от донора к реципиенту, возможна агглютинация (склеивание) и гемолиз (разрушение) эритроцитов. Чтобы этого не происходило, нужно учитывать группы крови, открытые К.Ландштейнером и Я.Янским в 1900 году. В плазме крови человека могут находиться особые белки названные агглютининами, которые взаимодействуют с агглютиногенами в мембране эритроцитов, вызывая их агглютинацию. Известно, что агглютинин α, содержащийся в плазме, склеивает эритроциты, содержащие в своей мембране агглютиноген А; агглютинин β — склеивает эритроциты, содержащие в своей мембране агглютиноген В.

Первая группа крови не содержит в эритроцитах агглютиногены и называется группа ноль (0), в плазме крови этой группы находятся агглютинины αβ; у людей со второй группой в мембране эритроцитов агглютиноген А, в плазме — агглютинин β; у людей с третьей группой в эритроцитах агглютиноген В, в плазме — агглютинин α; у четвертой группы агглютиногены АВ, агглютининов в плазме крови нет.

Если кровь донора содержит агглютиногены, которые склеиваются плазмой реципиента, происходит полная агглютинация эритроцитов донора (+). Возможна частичная агглютинация (— +) если агглютининами крови донора склеивается часть эритроцитов реципиента.

Эритроциты 1 группы не склеиваются плазмой реципиента, поэтому первую группу называют универсальным донором, но при переливании первой группы ко второй, третьей и четвертой происходит частичная агглютинация эритроцитов реципиента, поэтому переливают кровь только одноименной группы. Четвертая группа крови не содержит в плазме агглютинины и не склеивает эритроциты крови донора любой группы, называется универсальным реципиентом, но возможна частичная агглютинация собственных эритроцитов агглютининами плазмы донора.

Кроме системы АВО есть и другие системы антигенов, поэтому лучше всего приливать заранее подготовленную собственную кровь. Переливание крови по системе АВО

В 1940 году К.Ландштейнер обнаружил, что 85% людей в мембранах эритроцитов содержат белок резус-фактор (Rh+). При повторном переливании резус-положительной (Rh+) крови, совместимой по системе АВ0, резус-отрицательному (Rh-) реципиенту наблюдается гемотрансфузионный шок, связанный с агглютинацией эритроцитов донора резус-антителами реципиента.

Если женщина Rh-, а плод Rh+, то возникает резус-конфликт, связанный с разрушением эритроцитов плода, который особенно опасен при второй беременности. Группы крови и резус-фактор наследуются и сохраняются у человека всю жизнь.

Свертывание крови

Важнейшая защитная функция крови. На этот процесс влияют 13 факторов, имеющихся в плазме крови, а также 12 факторов, выделяемых тромбоцитами. Наиболее важны 5: фибриноген, протромбин, тканевый и кровяной тромбопластин, ионы Са2+. Тромбоциты, плоские безъядерные клетки, образуются в красном костном мозге и живут 5-11 дней. Разрушаются в печени и селезенке. Как и лейкоциты способны к передвижению и образованию псевдоподий. Важнейшая функция — участие в гемостазе (свертывании крови).

На первой стадии гемостаза при повреждении сосудов выделяется тканевый тромбопластин, к поврежденным клеткам прилипают и разрушаются тромбоциты, происходит выделение тромбоцитарного тромбопластина.

На второй стадии гемостаза под их влиянием, при участи Са2+ и других факторов свертывания, протромбин кровяной плазмы превращается в тромбин.

На третьей стадии тромбин вызывает полимеризацию растворенного в плазме фибриногена в нерастворимые волокна фибрина, в которых задерживаются клетки крови, образуется сгусток, кровотечение останавливается. Плазма крови без фибрина называется сывороткой.

Гемофилия — несвертываемость крови, заболевание, связанное с рецессивной мутацией в половой Х-хромосоме. Так как у мужчин в клетках по одной Х-хромосоме, то гемофилией чаще всего болеют мужчины.

Существует и противосвертывающая система, благодаря которой растворяются тромбы, кровь в сосудах не свертывается. В клетках печени, легких и некоторых лейкоцитах (базофилах) образуется гепарин, препятствующий свертыванию крови.

Лейкоциты, иммунитет

Лейкоциты — белые кровяные клетки, имеющие ядро. Увеличение числа лейкоцитов — лейкоцитоз, уменьшение — лейкопения. Способны к передвижению и делению (пролиферации).

Рис. 195. Лейкоциты.

Образуются в красном костном мозге, лимфатических узлах, селезенке. Разрушаются в селезенке. Живут до 20 суток, клетки иммунологической памяти — десятки лет. В зависимости от зернистости цитоплазмы делятся на гранулоциты и агранулоциты (рис. 195).

К гранулоцитам относятся нейтрофилы (50-75%), эозинофилы (1,5%) и базофилы (0,5%). Нейтрофилы — наиболее многочисленная разновидность белых кровяных телец, они составляют 50-75% всех лейкоцитов. Имеют обильную мелкую пылевидную зернистость розовато-фиолетовой окраски. Основная их функция — защита от инфекций путем хемотаксиса (направленного движения к стимулирующим агентам) и фагоцитоза (поглощения и переваривания) чужеродных микроорганизмов.

Эозинофилы (цитоплазматические гранулы окрашиваются кислыми красителями) — это лейкоциты, участвующие в реакции организма на паразитарные, аллергические, аутоиммунные, инфекционные и онкологические заболевания.

Базофилы. Наиболее малочисленная популяция лейкоцитов. Гранулы окрашиваются основными красителями. Базофилы участвуют в аллергических и клеточных воспалительных реакциях замедленного типа в коже и других тканях, вызывая отечность, повышенную проницаемость капилляров. Содержат такие биологически активные вещества, как гепарин и гистамин.

К агранулоцитам относятся моноциты и лимфоциты. Моноциты – самые крупные клетки среди лейкоцитов, составляют 2-10% всех лейкоцитов, способны к амебовидному движению, проявляют выраженную фагоцитарную и бактерицидную активность. Макрофаги – моноциты способны поглотить до 100 микробов, в то время как нейтрофилы – лишь 20-30. В очаге воспаления макрофаги фагоцитируют микробы, погибшие лейкоциты, поврежденные клетки воспаленной ткани, очищая очаг воспаления и подготавливая его для регенерации. За эту функцию моноциты называют «дворниками организма». Секретируют более 100 биологически активных веществ. Стимулируют фактор, вызывающий некроз опухоли (кахексин), обладающий цитотоксическим и цитостатическим эффектами на опухолевые клетки. Секретируемые вещества воздействуют на терморегуляторные центры гипоталамуса, повышая температуру тела. После выхода из костного мозга циркулируют в крови от 36 до 104 часов, а затем мигрируют в ткани. В тканях моноциты дифференцируются в макрофаги. В тканях содержится в 25 раз больше моноцитов, чем в крови.

Лимфоцитов от 20 до 45% от общего количества лейкоцитов. Образуются стволовыми клетками красного костного мозга, среди них различают Т-лимфоциты и В-лимфоциты.

Т-лимфоциты заселяют тимус, созревают, превращаясь в Т-киллеры, Т-хелперы и Т-супрессоры и отвечают, совместно с фагоцитами, за клеточный иммунитет.

Другая часть лимфоцитов задерживается в периферических органах иммунной системы — в лимфатических узлах, миндалинах, в аппендиксе, где они превращаются в В-лимфоциты обеспечивающие гуморальный иммунитет — образование антител. Антитела (иммуноглобулины) вырабатываются против конкретных антигенов и помогают справиться с инфекцией. Часть В-лимфоцитов превращается в клетки иммунологической памяти, сохраняющиеся в организме человека десятки лет. При повторном попадании в организм микроорганизмов с этими же антигенами, активируются клетки иммунологической памяти и иммунный ответ развивается очень быстро, человек становится невосприимчивым ко многим заболеваниям.

Иммунный ответ. Возбудители инфекции, попавшие в организм человека, фагоцитируются и их антигены выставляются на поверхность фагоцита. Т-хелпер с соответствующими рецепторами активируется и выделяет химические вещества, вызывающие размножение В- и Т-лимфоцитов, способных поражать данный возбудитель (рис. 196).

Рис. 196. Схема иммунного ответа. 1 — захват возбудителя инфекции фагоцитом и выставление антигенных детерминант на поверхность; 2 — передача антигенных детерминант Т-хелперу; 3 — выделение веществ, вызывающих пролиферацию В- и Т-лимфоцитов; 4 — уничтожение клетки, на поверхности которой антигены возбудителя Т-киллером; 5 — превращение В-лимфоцита в плазматическую клетку; 6 — образование антител плазматической клеткой; 7 — прекращение иммунной реакции Т-супрессором.

Под действием этих веществ, В-лимфоциты превращаются в плазматические клетки и выделяют до 2000 антител в секунду. Антитела связываются с антигенами, затем происходит уничтожение чужеродных тел. Т-киллеры уничтожают и возбудителей, и собственные клетки, на поверхности которых находятся антигены проникших в клетку возбудителей. Т-супрессоры прекращают иммунный ответ после того, как организм справился с инфекцией.

Иммунитет — способ защиты организма от генетически чуждых и инфекционных агентов. Клеточный иммунитет обеспечивается клетками — фагоцитами и Т-киллерами. Впервые открыт И.И.Мечниковым, который доказал возможность фагоцитоза лейкоцитами инородных частиц или разрушающихся клеток самого организма. За разработку теории клеточного иммунитета И.И.Мечников награжден Нобелевской премией.

Виды иммунитета. Различают естественный иммунитет и иммунитет искусственный.

Естественный иммунитет может быть врожденным и приобретенным. Естественный врожденный иммунитет организм получает по наследству, приобретенный может быть пассивным (получение антител с молоком матери или через плаценту) и активным — полученным после болезни, когда образуются собственные антитела и клетки иммунологической памяти на данные антигены.

Искусственный иммунитет также может быть активным и пассивным. Активный иммунитет развивается после введения в организм вакцины — ослабленных или убитых формы микробов или их токсинов. При этом в организме осуществляется иммунный ответ на введенные антигены. Пассивный иммунитет осуществляется за счет введения в организм сывороток с готовыми антителами. Основоположником метода вакцинации является английский врач Э.Дженнер, впервые предложивший использовать для предупреждения заболевания натуральной оспой прививку возбудителей коровьей оспы. Л.Пастер создал вакцины против куриной холеры, сибирской язвы, бешенства.

sbio.info

Эритроцит - это... Что такое Эритроцит?

Эритроциты (от греч. ἐρυθρός — красный и κύτος — вместилище, клетка), так же известные под названием красные кровяные тельца  — клетки крови человека, позвоночных животных и некоторых беспозвоночных (иглокожих).

Функции

Основной функцией эритроцитов является перенос кислорода из лёгких к тканям тела, и транспорт диоксида углерода (углекислого газа) в обратном направлении.

Однако, кроме участия в процессе дыхания, они выполняют в организме также следующие функции:

Формирование эритроцитов

Формирование эритроцитов (эритропоэз) происходит в костном мозге черепа, ребер и позвоночника, а у детей — еще и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни - 3-4 месяца, разрушение (гемолиз) происходит в печени и селезенке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения.

а) Из стволовых гемопоэтических клеток сначала появляется большая клетка с ядром, не обладающая характерным красным цветом — мегалобласт

б) Затем она окрашивается в красный цвет — теперь это эритробласт

в) уменьшается в размере в процессе развития — теперь это нормоцит

г) утрачивает ядро — теперь это ретикулоцит. У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка.

Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Структура и состав

Обычно эритроциты имеют форму двояковогнутого диска и содержат в основном дыхательный пигмент гемоглобин. У некоторых животных (например, верблюда, лягушки) эритроциты имеют овальную форму.

Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Эритроциты (красные кровяные тельца крови) человека.

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду. Плазмолемму пронизывают трансмембранные белки - гликофорины, которые, благодаря большому количеству остатков сиаловой кислоты, ответственны примерно за 60% отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеидной природы — агглютиногены — факторы систем групп крови (на данный момент изучено более 15 систем групп крови: AB0, резус фактор, Даффи, Келл, Кидд), обусловливающие агглютинацию эритроцитов.

Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У низших позвоночных эритроциты крупные (например, у хвостатого земноводного амфиумы — 70 мкм в диаметре), эритроциты высших позвоночных мельче (например, у козы — 4 мкм в диаметре). У человека диаметр эритроцита составляет 7,2—7,5 мкм, толщина — 2 мкм, объём — 88 мкм³.

Переливание крови

При переливании крови от донора к реципиенту возможна агглютинация(склеивание) и гемолиз(разрушение) эритроцитов. Чтобы этого не происходило стоит учитывать группы крови, открытые К. Ландштейнером и Я. Янским в 1900 г. Агглютинацию вызывают белки, находящиеся на поверхности эритроцита, - антигены (агглютиногены) и находящиеся в плазме антитела (агглютинины). Существуют 4 группы крови, для каждой характерны различные антигены и антитела. Переливание возможно лишь между представителями одной группы крови. Но например, I группа крови(0) является универсальным донором, а IV(AB) - универсальным реципиентом.

I - 0 II - A III - B IV - AB
αβ β α --

Место в организме

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 сантиметра в минуту, что дает им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках.

Количество эритроцитов в крови в норме поддерживается на постоянном уровне (у человека в 1 мм³ крови 4,5—5 млн эритроцитов, у некоторых копытных 15,4 млн (лама) и 13 млн (коза) эритроцитов, у пресмыкающихся — от 500 тыс. до 1,65 млн, у хрящевых рыб — 90—130 тыс.) Общее число эритроцитов снижается при анемиях, повышается при полицитемии.

Продолжительность жизни эритроцита человека в среднем 125 суток (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается). У собак — 107 дней, у кроликов и кошек — 68.

Патология

Эритроциты человека различной формы (схема).

При различных заболеваниях крови возможно изменение цвета эритроцитов, их размеров, количества, а также формы; они могут принимать, например, серповидную, овальную или мишеневидную форму.

При изменении кислотно-щелочного баланса крови в сторону закисления (от 7.43 до 7.33) происходит склеивание эритроцитов в виде монетных столбиков, либо их агрегация.

Среднее содержание гемоглобина для мужчин 13,3—18 г% (или 4,0-5,0*1012 единиц), для женщин 11,7—15,8г% (или 3,9-4,7*1012 единиц). Единица измерения уровня гемоглобина, представляет собой процент содержания гемоглобина в 1 грамме эритроцитарной массы.

Примечания

Ссылки

Литература

dic.academic.ru


Смотрите также