Где разрушаются эритроциты


ЭРИТРОЦИТЫ - Медицинские науки

ЭРИТРОЦИТЫ

Эритроциты. Эритроцитами называются безъядерные красные кровяные клетки. Они имеют двояковогнутую форму, которая увеличивает их поверхность более чем в 1,5 раза. Количество эритроцитов в 1 мм3 крови равно у мужчин 5— 5,5 млн., а у женщин — 4—5,5 млн. У здоровых новорожденных в первый день жизни оно доходит до 6 млн., а затем снижается до нормы взрослого человека. У младших школьников оно равно 5— 6 млн. Наибольшие колебания количества эритроцитов наблюдаются в период полового созревания.

Рис. 45. Кровь человека:/ — эритроциты, 2 — нейтрофильный лейкоцит, 3 — эозинофильный лейкоцит, 4 — лимфоцит, 5 — кровяные пластинкиМышечная работа вызывает у детей увеличение или уменьшение количества эритроцитов или не изменяет его. В 13—15 лет количество эритроцитов увеличивается при мышечной работе значительно реже и меньше, чем в 16—18 и 19—23.

В 16—18 лет при длительной мышечной работе иногда наблюдается незначительное снижение содержания эритроцитов и гемоглобина в результате разрушения эритроцитов. Восстановление количества эритроцитов до исходного уровня после мышечной работы у юношей 17—18 лет происходит позднее, чем у взрослых.

В эритроцитах взрослого человека гемоглобин составляет около 32% веса, в среднем 14% веса цельной крови (14 г на 100 г крови). Это количество гемоглобина приравнивается к 100%.

Содержание гемоглобина в эритроцитах новорожденных доходит до 145% нормы взрослого человека, что равно 17—25 г гемоглобина на 100 г крови. К 1—2 годам количество гемоглобина падает до 80—90%, а затем снова возрастает до нормы.

Рис. 46. Возрастные изменения содержания гемоглобина в крови: 1 — мальчики и девочки, 2 — мужчины, 3 — женщиныОтносительное содержание гемоглобина с возрастом увеличивается и к 14—15 годам доходит до нормы взрослого. Оно равно (в г на кг веса тела): в 7—9 лет — 7,5; 10—11—7,4; 12—13 — 8,4 и 14—15—10,4.

Гемоглобин обладает видовой специфичностью. У новорожденного он поглощает больше кислорода, чем у взрослого. С 2 лет эта способность гемоглобина максимальна, а с 3 лет гемоглобин поглощает кислород, как и у взрослых.Большое содержание эритроцитов и гемоглобина и большая способность гемоглобина поглощать кислород у детей до 1 года обеспечивают им более интенсивный обмен веществ.С возрастом увеличивается количество кислорода в артериальной и венозной крови. У детей 5—6 лет оно равняется (в см3 в 1 мин) в артериальной крови 400, в венозной — 260, у подростков 14—15 лет соответственно 660 и 435, взрослых 800 и 540. Содержание кислорода в артериальной крови (в см3 на 1 кг веса в 1 мин) равно: у детей 5—6 лет — 20, подростков 14—15 лет— 13 и у взрослых—11. Относительно большое количество кислорода, переносимое артериальной кровью, у дошкольников объясняется относительно большим количеством крови и кровотоком, значительно превышающим кровоток взрослых.Количество кислорода, максимально поглощаемого кровью, можно определить, учитывая, что 1 г гемоглобина поглощает при ГС и давлении 760 мм рт. ст. 1,34 см3 кислорода. Кровь взрослого человека содержит примерно 600 г гемоглобина. Следовательно, она может поглотить 800 см3 кислорода. Соединение гемоглобина с кислородом (оксигемоглобин) легко диссоциирует в тканях на гемоглобин и кислород.Способность гемоглобина соединяться с окисью углерода в 250 раз больше, чем его способность соединяться с кислородом, а диссоциирует соединение гемоглобина с окисью углерода — карбоксигемоглобин в 3600 раз медленнее. Поэтому образование карбоксигемоглобина при угаре опасно для жизни.Кроме переноса кислорода, эритроциты участвуют в ферментативных процессах, в сохранении активной реакции крови и в обмене воды и солей. За сутки через эритроциты проходит от 300 до 2000 дм3 воды.При отстаивании цельной крови, к которой прибавлены противосвертывающие вещества, эритроциты постепенно оседают. Скорость реакции оседания эритроцитов — РОЭ, у мужчин 3—9 мм, а у женщин — 7—12 мм в час. РОЭ зависит от количества белков в плазме крови и от отношения глобулинов к альбуминам. Так как у новорожденного в плазме около 6% белков и отношение количества глобулинов к альбуминам тоже меньше, чем у взрослых, то РОЭ у них около 2 мм, у грудных детей — 4—8 мм, а у более старших детей — 4—8 мм в час.После учебной нагрузки у большинства детей 7—11 лет нормальная РОЭ (до 12 мм в час) и замедленная РОЭ ускоряются, а ускоренная РОЭ замедляется.Эритроциты сохраняются только в физиологических растворах, в которых концентрация минеральных веществ, особенно поваренной соли, такая же, как и в плазме крови. Эритроциты разрушаются в растворах, где содержание поваренной соли меньше или больше, чем в плазме крови, при действии на них ядов, ультрафиолетовых лучей, ионизирующего облучения, лучей Рентгена, эманации радия. Разрушение эритроцитов называется гемолизом.

Способность эритроцитов противостоять гемолизу называется резистентностью. С возрастом резистентность эритроцитов значительно падает. Она наибольшая у новорожденных и к 10 годам уменьшается примерно в 1,5 раза.

Эритроциты в здоровом организме постоянно разрушаются при участии особых веществ — гемолизинов, вырабатываемых в печени. Эритроциты живут у новорожденного 14, а у взрослого не больше 100—150 дней (в среднем 30—40 дней). У человека гемолиз происходит в селезенке и печени. Вместо разрушенных в кровотворных органах образуются новые эритроциты и, следовательно, количество эритроцитов поддерживается на относительно постоянном уровне.

Похожие материалы:

Лейкоциты

Тромбоциты

Кроветворные органы

Свёртывание крови

nauka03.ru

Функции эритроцитов

Функцией эритроцитов явля­ется перенос кислорода содержащимся в них гемоглобином от лег­ких к тканям и углекислого газа от тканей к альвеолам легких.

Выполнению этой задачи подчинены особенности организации эрит­роцита: он лишен ядра, 95 % его массы представлены гемоглоби­ном, цитоскелет эритроцита обладает способностью к деформиру­емости, что позволяет ему многократно изменять форму, легко проникая через тонкие капилляры (имея диаметр от 8 до 7 мкм, он проникает через сосуды с диаметром меньше 3 мкм). Собственные потребности эритроцита в кислороде весьма малы. Глюкоза является основным источником энергии в этой клетке. Энергия, необходимая для восстановления формы деформированного в капилляре эритро­цита, активного транспорта катионов через его мембрану, синтез глюкотатиона образуется в ходе анаэробного гликолиза по пути Эмбден-Мейергофа. В этом цикле расходуется 90% потребляемой эритроцитами   глюкозы.   Торможение    гликолиза,   уменьшающее   в клетке концентрацию АТФ, приводит к накоплению в ней ионов натрия и воды, ионов кальция, повреждению мембраны, что пони­жает механическую и осмотическую устойчивость эритроцита, уско­ряет его разрушение. Энергия глюкозы в эритроците используется также в реакциях восстановления, зашишаюших компоненты эрит­роцита от окислительной денатурации. Благодаря этому, атомы же­леза гемоглобина поддерживаются в восстановленной форме, что препятствует превращению гемоглобина в метгемоглобин, неспособ­ному к транспорту кислорода. Восстановление обеспечивается фер­ментом — метгемоглобинредуктазой. В восстановленном состоянии поддерживаются и серусодержащие группы, входящие в мембрану эритроцита, гемоглобин, ферменты, что сохраняет функциональные свойства этих структур. В ходе метаболизма по побочному пути гликолиза, контролируемого ферментом дифосфоглииератмутазой, об­разуется 2,3-дифосфоглииерат (2,3-ДФГ). Основное значение 2,3-ДФГ заключается в регуляции им сродства гемоглобина к кислороду.

Эритроциты имеют дисковидную, двояковогнутую форму, их объем достигает 85-90 мкм3, а поверхность — около 145 мкм2. Такое соотношение плошади к объему благоприятствует деформируемости эритроцитов. Уменьшение отношения поверхность/объем эритроцита, наблюдаемое при увеличении объема эритроцита, приобретении им сферичной формы при избыточном поступлении в эритроцит воды, делает его менее деформируемым. Это ведет к быстрому разруше­нию эритроцита.

Большую роль в поддержании формы и деформи­руемости эритроцитов играют липиды их мембран, которые пред­ставлены фосфолипидами (глииерофосфолипидами, сфинголипидами), гликолипидами, холестерином. Увеличение соотношения холестерин-фосфолипиды в мембране увеличивают ее вязкость, уменьшает теку­честь и эластичность мембраны. В результате снижается деформиру­емость эритроцита.

Усиление окисления ненасыщенных жирных кис­лот фосфолипидов мембраны перекисью водорода (Н2О2) или суперок­сидными радикалами (О2) вызывает гемолиз эритроцитов (разрушение эритроцитов с выходом гемоглобина в окружающую среду), повреж­дение молекулы гемоглобина эритроцита. Образующийся в эритроците глютатион, а также антиоксиданты (а-токоферол и др.) защищают компоненты  эритроцита  от данного повреждения.

До 52% массы мембраны эритроцитов составляют белки. Среди них гликопротеины, в т.ч. формирующие вместе с олигосахаридами антигены групп крови — М, N, S, Kell. Гликопротеины мембраны содержат сиаловую кислоту, обеспечивающую эритроциту электроне­гативный заряд, отталкивающий эритроциты друг от друга. Спектрин и анкирин — белки цитоскелета, играющие важную роль в поддер­жании  формы  эритроцита.

Энзимы мембраны — Na+ K+-зависимая АТФ-аза обеспечивают активный транспорт Na+ из эритроцита и К+ в его цитоплазму. Са++-зависимая АТФ-аза обеспечивает выведение Са++ из эритроцита. Со­держащийся в эритроците фермент — карбоангидраза катализирует реакцию синтеза угольной кислоты из воды и углекислого газа, после чего  эритроцит транспортирует ее  в виде  бикарбоната  к легким.

Гемоглобин — это хемопротеин, окрашивающий эритроцит в красный цвет после присоединения к содержащемуся в нем железу (Fe++) молекулы кислорода. У мужчин в 1 дкл содер­жится 14,5±1,5 г гемоглобина, у женщин — 13,0±1,5 г. Молекуляр­ная масса гемоглобина составляет около 60 000. Его молекула со­стоит их четырех субъединиц, каждая из которых представлена гемом (содержащим железо производным порфирина), связанным с белковой частью молекулы — глобином. Глобин представлен двумя а- и двумя В- полипептидными цепями. Синтез гема протекает в митохондриях эритробластов, первым этапом которого является син­тез а-амино- В- кетоадипиновой кислоты из глицина и сукцинил Коэнзима А (рис.6.1.). Синтез цепей глобина идет на полирибосомах и контролируется генами 11 и 16 хромосом. У взрослого человека глобин состоит из двух а- и двух В- полипептидных цепей. Гемог­лобин, содержащий две а- и две В-цепи, называется А тип (от adult — взрослый). Он составляет основную часть нормального ге­моглобина взрослого человека. В крови плода человека содержится гемоглобин типа F (от faetus — плод). Его глобин представлен двумя  цепями  а  и двумя В.

Гемоглобин обладает способностью обратимо присоединять кисло­род. 1 г гемоглобина связывает 1,34 мл кислорода. Соединения ге­моглобина с молекулой кислорода называется оксигемоглобин. Срод­ство гемоглобина к кислороду выражают парциальным давлением кислорода, при котором гемоглобин насыщен кислородом на 50% (Р50). Молекулярный кислород обладает высоким сродством к гемог­лобину. Однако, и другие соединения могут фиксироваться на его молекуле, ослабляя связь кислорода с гемоглобином. Поэтому срод­ство гемоглобина к кислороду и диссоциация оксигемоглобина (т.е. отсоединение молекулы кислорода от гемоглобина) зависят от на­пряжения кислорода, угольной кислоты в крови, концентрации про­тонов водорода (рН крови) и ее температуры, концентрации 2,3-дифосфоглицерата в эритроцитах. Изменение величин этих факторов (например, повышение рО2 или снижение рСО2 в крови, нарушение образования 2,3-дифосфоглицерата в эритроцитах) снижают скорость отдачи кислорода гемоглобином. Напротив, увеличение внутриклеточной концентрации 2,3-дифосфоглицерата, снижение рО2 крови, сдвиг рН в кислую сторону — уменьшают сродство гемоглобина к кислороду, тем самым облегчая отдачу его тканям. Увеличение кон­центрации 2,3-дифосфоглицерата наблюдается у лиц, тренированных к длительной физической работе, адаптированных к длительному пребыванию в  горах.

Оксигемоглобин, отдавший кислород, называется восстановленным или дезоксигемоглобином. До 10-30% СО2 образует карбаминовое соединение с радикалом NH, глобина и в форме кабаминового соединения  транспортируется  от тканей к легким.

В первые 3 месяца жизни плода человека у него представлены эмбриональные гемоглобины, молекула глобина которых имеет от­личный от гемоглобина А состав полипептидных цепей. Это гемог­лобин типа  Gower 1  (4эпсилон  цепи) и Gower II  (2а и 2  эпсилон цепи). В последующем формируется гемоглобин F, молекула глобина которого состоит из 2а и 2у цепей. При рождении ребенка до 50-80% гемоглобина у него представлены типом F и 15-40% —типом А, а к 3 годам уровень гемоглобина F снижается до 2%. Гемоглобин F обладает большим сродством к кислороду, чем гемоглобин А, 2,3-ДФГ также меньше влияет на соединение гемоглобина F с кисло­родом. Поэтому гемоглобин F переносит на 20-30% больше кисло­рода, чем тип А, что способствует лучшему выполнению его функ­ции  —  снабжению  плода   кислородом.

Максимальная продолжительность жизни эритроцитов достигает 120 дней, сред­няя — 60-90 дней. Старение эритроцитов сопровождается уменьшением образования в них количества АТФ в ходе метаболизма глю­козы. Это нарушает требующие энергии процессы восстановления формы эритроцитов, транспорта катионов, защиты компонентов эритроцитов от окисления. Эритроциты становятся менее эластичны, их мембрана теряет сиаловые кислоты, в результате чего, они или разрушаются внутри сосудов (внутрисосудистый гемолиз- 20%), или же становятся добычей захватывающих и разрушающих их макрофагов селезенки, купферовских клеток печени и макрофагов костного мозга (внесосудистый или внутриклеточный гемолиз-80%). В ходе внутрикле­точного гемолиза каждый день разрушается 6- 7 г гемоглобина, ос­вобождая в макрофаги до 30 мг железа. После отщепления от ге­моглобина гем превращается в желчный пигмент — билирубин, по­ступает с желчью в кишечник, и в виде стеркобилина и уробилина выводится с калом и мочой. При метаболизме 1 г гемоглобина образуется  33  мг  билирубина.

При внутрисосудистом гемолизе разрушается 10-20 % эритроци­тов. Их гемоглобин освобождается непосредственно в плазму, в которой он связывается плазменным белком — гаптоглобином. Это гликопротеин, при электрофорезе белков мигрирующий с а2— глобу­лином. Половина количества образовавшегося комплекса — гемог­лобин-гаптоглобин уже за 10 минут покидает плазму и поглощается паренхиматозными клетками печени, что предупреждает поступление свободного гемоглобина в почки. У здорового человека в плазме содержится около 1 г/л плазмы гаптоглобина и 3-10 мг гемоглоби­на.

См. продолжение. 6.1.2. Эритропоэз. Регуляция эритропоэза. Роль железа, витаминов и микроэлементов в кроветворении. 6.1.3. Физиология Группы крови

doctor-v.ru

Жизненный цикл эритроцитов

Зрелый эритроцит, который циркулирует в крови, является дифференцированной клетки, способной к дальнейшей пролиферации. Но и клеткой его можно назвать условно, поскольку он лишен одного из главных атрибутов клетки - ядра. Ядра содержат лишь предшественники эритроцитов - эритробласты костного мозга. При их созревании ядро выталкивается через мембрану. Эритроцит способен циркулировать в кровотоке в течение 100-120 суток. После этого он погибает. Таким образом, за сутки обновляется около 1% эритроцитов. Об этом свидетельствует наличие в крови молодых эритроцитов - ретикулоцитов (от лат. Rete - сеть, основой которой являются остатки и-РНК). После выхода из костного мозга в русле крови они сохраняются в виде ретикулоцитов около суток. Поэтому их концентрация в крови - около 0,8-1% всех эритроцитов. Активизация эритропоэза сопровождается увеличением числа ретикулоцитов в крови. Но в любом случае эритропоэз может быть интенсифицированный не более чем в 5-7 раз по сравнению с исходным уровнем. То есть, если в обычных условиях за сутки образуется около 25 000 эритроцитов в 1 мкл крови, то при интенсивном эритропоэза за сутки из костного мозга может выйти в русло крови до 150 000 эритроцитов в 1 мкл. Существенных запасов (депо) эритроцитов в организме человека нет. Поэтому ликвидация анемии (после потери крови) происходит только за счет усиления эритропоэза. Но при этом существенное увеличение количества эритроцитов в костном мозге начинается лйше через 3-5 суток. В периферической крови это становится заметным еще позже. А потому после потери крови или гемолиза для восстановления уровня эритроцитов нормы нужно достаточно много времени (не менее 2-3 нед). Разрушение эритроцитов. Жизненный цикл эритроцитов заканчивается их разрушением (гемолизом). Гемолиз эритроцитов может происходить в русле крови. Клетки, задержались, погибают в макрофагальной системе. Эти процессы зависят от изменения свойств как собственно эритроцита, так и плазмы крови. Для выполнения газотранспортной функции эритроцит почти не расходует энергию АТФ, поэтому, наверное, АТФ в нем образуется лишь в небольшом количестве. При отсутствии митохондрий АТФ синтезируется за счет гликолиза. Используется также пентозофосфатный путь, побочным продуктом которого является 2,3-дифосфоглицерату (2,3-ДФГ). Это соединение участвует в регулировании сродства гемоглобина к 02. АТФ, которая синтезируется в эритроцитах, тратится на: 1) поддержание эластичности мембраны, 2) поддержание ионных градиентов, 3) обеспечение некоторых биосинтетических процессов (образование ферментов) 4) восстановление метгемоглобина подобное. В середине эритроцитов содержание белков намного выше, а низкомолекулярных веществ, наоборот, ниже, чем в плазме. Суммарный осмотическое давление, создаваемое благодаря высокой концентрации белков-и низкой - солей, в середине эритроцита несколько ниже, чем в плазме. Это обеспечивает нормальный тургор эритроцитов. Поскольку мембрана его для белков непроницаема, основным компонентом, обеспечивающим обмен воды между эритроцитах и плазме, являются низкомолекулярные ионы. Так, при повышении в крови концентрации низкомолекулярных соединений, которые легко проникают в эритроциты,-в середине их осмотическое давление увеличивается. Вода поступает внутрь эритроцитов, они набухают и могут лопнуть. Состоится осмотическое гемолиз. Это можно наблюдать, например, при уремии, вызванной увеличением содержания в крови мочевины. В эритроците при нарушении процесса образования АТФ снижается скорость скачивания ионов (деятельность ионных насосов), что приводит к увеличению концентрации ионов внутри клеток, а это в свою очередь - к осмотическому гемолизу, Гемолиз происходит и в определенном гипотоническому растворе. Мерой осмотической стойкости (резистентности) эритроцитов является концентрация NaCl в растворе, при которой происходит гемолиз. В норме гемолиз начинается при 0,4% концентрации NaCl (минимальная резистентность). При такой концентрации NaCl разрушаются наименее устойчивые эритроциты. В 0,34% растворе NaCl (максимальная резистентность) разрушаются все эритроциты. При некоторых заболеваниях осмотическая стойкость эритроцитов уменьшается, и гемолиз происходит при высокой концентрации раствора NaCl, Напротив, в гипертоническом растворе в связи с выходом воды эритроциты на время сморщиваются. При старении эритроцитов снижается активность метаболических процессов. Вследствие этого мембрана клеток постепенно теряет эластичность, и, когда эритроцит проходит некоторые узкие участки сосудистого русла, он у них может задерживаться. Одним из таких участков является селезенка, где расстояние между трабекулы составляет около 3 мкм. Здесь эритроциты разрушаются, а обломки клеток и гемоглобин фагоцитируют макрофагами.

Часть эритроцитов может разрушиться в русле крови. При этом гемоглобин, который вышел в плазму, соединяется с а2-гликопротеином плазмы (гаптоглобина). Комплекс, который образуется, не проникает через мембрану почек, а поступает в печени, селезенки, костного мозга. Здесь он распадается и, попав в печень, превращается в билирубин. При поступлении большого количества гемоглобина часть его фильтруется в почечных канальцах и выводится с мочой, разрушается или возвращается в кровоток, откуда поступает в печень.

ГематологияБолезни кровьБолезни кровиАнемия иммунологического генезаГемолитическая анемияГипопластическая анемияВ12-дефицитная анемияМегалобластные анемииСидеробластные анемии

fiziologija.vse-zabolevaniya.ru


Смотрите также