Эритроциты в гипотоническом растворе


Что характеризует осмотическая резистентность эритроцитов?

Главная задача эритроцитов – это транспортировка кислорода в ткани и вывод их них углекислого газа. Для этого их мембраны должны обладать прочностью и эластичностью, что крайне важно при поддержании необходимого уровня объемного гомеостаза. Лабораторный метод исследования стойкости мембраны позволяет определить степень сопротивления стенки красной кровяной клетки при искусственной смене давления осмоса.

Что это такое?

Осмотическая резистентность эритроцитов характеризует их устойчивость относительно деструктивных факторов: химических, температурных, механических. При лабораторных опытах особое внимание уделяется их стойкости к гипотоническим р-рам NaCl, а именно, какая концентрация вызывает гемолиз. Нормально функционирующие клетки сопротивляются осмосу и сохранят прочность. Такая способность характеризует осмотическую устойчивость, или резистентность эритроцитов.

Если они становятся слабыми, то маркируются иммунной системой, после чего удаляются из организма.

Метод исследования

Основной лабораторный метод определения стойкости эритроцитов к разрушению – это реакция гипотонического солевого раствора и крови, смешанного в одинаковых объемах. Анализ позволяет выявить стабильность мембраны клетки. Альтернативный метод определения ОРЭ – фотоколориметрический, при котором измерения производят специальным аппаратом – фотоколориметром.

Физраствор представляет собой смесь дистиллированной воды и хлорида натрия. В растворе с концентрацией 0,85% эритроциты не разрушаются, его называют изотоническим. При более высокой концентрации получится гипертонический, а ниже – гипотонический раствор.

В них эритроциты погибают, сжимаясь в гипертоническом, и набухая в гипотоническом р-ре.

Как проводится процедура?

Определение ОРЭ проводится добавлением равного количества крови (обычно 0,22 мл) в гипотонический раствор NaCl различных концентраций (0,7-0,22%). После часа выдержки смесь центрифугируют. В зависимости от цвета устанавливают начало распада и полный гемолиз. В начале процесса раствор имеет слегка розовый цвет, а ярко красный свидетельствует о полном распаде эритроцитов. Результат выражается в двух характеристиках резистентности, имеющих процентное выражение – минимальной и максимальной.

При наличии вторичной гемолитической анемии при дефиците глюклзо-6-фосфатдигидрогеназы, анализ может показать нормальную ОРЭ, что обязательно учитывают перед проведением исследования

Показатели нормы

Норма резистентности для взрослого человека независимо от пола является следующей (%):

  1. Максимальная – 0,34-0,32.
  2. Минимальная – 0,48-0,46.

В детском возрасте до 2 лет осмотическая устойчивость несколько выше нормального показателя, а норма ОРЭ у пожилых людей, как правило, ниже от стандартного минимального показателя.

Отклонения от нормы

Резистентность и прочность мембран эритроцитов находятся в зависимости от наследственных заболеваний или особенностей патологии.

Причинами роста или падения ОРЭ выступают следующие факторы:

  1. Повышение стойкости эритроцитов наблюдается при механической желтухе, когда на них оседают холестериновые отложения, приобретенном или наследственном сфероцитозе, стомацитодозе, различных формах гемоглобиноза.
  2. Значительная кровопотеря способствует перенасыщению крови незрелыми эритроцитами и истончению их мембран. Эти же признаки характерны при наличии онкогематологии, железодефицитной анемии, иммуносекретирующих опухолей и гемоглобинопатий.

Отдельные сердечно-сосудистые болезни вызывают насыщение крови уплощенными эритроцитами, имеющими небольшой индекс сферичности, а некоторые наследственные заболевания – клетками, имеющими чрезмерно шарообразную форму. Клетки с подобными аномалиями характерны плохой резистентностью.

Причины снижения ОРЭ:

  1. Сердечная недостаточность, вызывающая набухание до приобретения клетками сферической формы.
  2. Генетически обусловленная аномалия, когда в крови находятся шарообразные эритроциты.
  3. При старении эритроцитов и на последних этапах их жизненного цикла. В этот период клетки становятся округлыми, а проницаемость стенок заметно возрастает.

Признаки нарушения устойчивости

Нарушение ОРЭ сопровождается следующими симптомами:

  1. Упадком сил.
  2. Отсутствием аппетита.
  3. Быстрой общей усталостью.
  4. Падением веса тела.
  5. Постоянной сонливостью.
  6. Бледностью слизистых.
  7. Значительным повышением температуры.
При падении устойчивости, эритроциты помечаются системой иммунитета (маркерами), и выводятся из организма селезенкой. При этом печень не успевает нейтрализовать выделившийся при разрушении клеток билирубин, в результате развивается гемолиз. При развитии такого процесса анализ крови показывает недостаток красных клеток, а организм испытывает дефицит кислорода.

Что предпринять?

При обнаружении нарушения ОРЭ, проводятся дополнительные исследования с целью выявления причины расстройства. Если патология имеет не наследственную природу, то после устранения ее причины свойства эритроцитов возвращаются в пределы нормы. Так, при анемиях проводится кортикостероидная терапия, при гемолизе назначают фолиевую кислоту, железосодержащие препараты и витамины.

При частых рецидивах заболевания возможно проведение сплеэктомии.

Профилактика

Наследственный сфероцитоз нельзя предупредить, но пациенты, страдающие данной патологией, могут обратиться к генетику, чтобы провести анализ по обнаружению дефектного гена, способного передать болезнь их детям. Профилактика наследственной формы болезни сводится к терапевтическим мерам при наступлении криза. В остальных случаях профилактические меры заключаются в обеспечении оптимальных условий для нормального кроветворения при помощи правильного питания, витаминотерапии и здорового образа жизни.

Зависимость резистентности от формы и зрелости эритроцита

Показатель осмотической резистентности находится в прямой зависимости от зрелости, формы, а также и состава кровяной плазмы.

Форму эритроцитов определяют сопоставлением размеров: диаметра и толщины, что выражают индексом сферичности. Для нормальных клеток он находится в пределах 0,27-0,28, а значительные отличия от нормы наблюдаются при отклонениях, обусловленных наследственностью, когда эритроциты имеют шарообразную форму, что значительно снижает их резистентность.

Что касается возраста красных кровяных клеток, то самыми резистентными являются эритроциты, только вышедшие из кроветворных органов, а самую высокую стойкость имеют молодые клетки плоской формы, имеющие незначительный индекс сферичности. Красные клетки, завершающие жизненный цикл, приобретают округлую форму, и имеют устойчивость 0,4-0,6% с нормой 0,32-0,44%.

Границы резистентности

Принято отмечать верхнюю и нижнюю границу резистентности. Нижняя соответствует такой концентрации гипотонического р-ра, когда распадаются самые неустойчивые эритроциты, а верхняя – концентрации, при которой за 3 часа подвергаются гемолизу все клетки. В процентном выражении верхняя норма равна 0,34-0,32%, а нижняя 0,48-0,46%.

Падение показателя менее 0,32% происходит из-за больших кровопотерь, при застойной желтухе, талассемии, гемоглобинопатии, после удаления селезенки, отдельных заболеваниях полицитемией, гемоглобинозе С. Повышение значения более 0,48% возможно при гемолитической анемии младенцев, семейной гемолитической анемии, а также при интоксикации свинцом. Расширение границы ОРЭ происходит при обострении пернициозной анемии и при остром начинающемся гемолитическом кризе.

Осмотическая резистентность эритроцитов характеризует стойкость оболочки красных кровяных клеток к деструктивным факторам. Здоровые эритроциты имеют максимальную устойчивость после выхода из органов кроветворения, а минимальную по окончании цикла жизни, после чего маркируются иммунной системой и утилизируются в селезенке. Главный метод определения ОРЭ – взаимодействие гипотонических растворов NaCl с кровью.

Анализ позволяет определить стабильность мембраны эритроцита и границы резистентности.

Поделиться:

Нет комментариев

1pokrovi.ru

Осмотическая резистентность эритроцитов

Под резистентностью эритроцитов понимают их устойчивость к различным разрушающим факторам: механическим, тепловым и другим. Особое значение в лабораторных исследованиях имеет осмотическая резистентность эритроцитов, то есть устойчивость к гипотоническим растворам NaCl разной концентрации. С помощью специального теста определяют, при какой концентрации хлорида натрия начинается распад красных кровяных телец (гемолиз).

Эритроциты для нормального функционирования должны сопротивляться осмотическому давлению, то есть должны быть прочными. Способность к сопротивлению и называется осмотической устойчивостью, или резистентностью. Если красные тельца становятся слабыми, иммунная система их маркирует как отработанный материал и удаляет из организма.

Выделяют резистентность максимальную и минимальную. Максимальная соответствует концентрации гипотонического раствора NaCl, при которой в течение 3-х часов происходит гемолиз всех красных клеток. Минимальная определятся концентрацией раствора, при которой разрушаются наименее устойчивые эритроциты.

Физраствор – это дистиллированная вода с растворенной в ней поваренной солью. Физиологический раствор с концентрацией 0,85 процентов называют изотоническим. В нем разрушения эритроцитов не происходит.

Если концентрация соли ниже, раствор называют гипотоническим, если выше – гипертоническим. При помещении в такие растворы эритроциты начинают разрушаться. В гипертоническом, или гиперосмотическом, они теряют воду и сморщиваются. В гипотоническом, или гипоосмотическом, они поглощают воду и набухают.

Как проводится анализ?

Чтобы провести пробы на осмотическую резистентность эритроцитов, в пробирки помещают гипотонический раствор NaCl разной концентрации (от 0,7 % до 0,22%). В каждую пробирку добавляют одинаковое количество крови, как правило – 0, 02 мл. В течение часа держат при комнатной температуре, после чего центрифугируют и по цвету раствора определяют начало разрушения эритроцитов и полный гемолиз. Если раствор слегка порозовел, это говорит о начале разрушения. При полном распаде раствор приобретает ярко-красный цвет.

В результате получают два параметра – максимальную и минимальную резистентность, которая выражается в процентах.

Советуем прочитать:Сколько живут эритроциты?

Для взрослых людей нормой считается:

У детей до двух лет осмотическая устойчивость в норме выше, чем у более старших. У пожилых людей – немного ниже нормы.

Причины отклонения от нормы

Причин отклонения от нормы много. Максимальная резистентность (ниже 0,32%) наблюдается при:

Поведение эритроцитов в гипертоническом, изотоническом и гипотоническом растворе

Минимальная осмотическая стойкость (выше 0,48%) связана:

Незначительное снижение может происходить при следующих состояниях:

К причинам снижения осмотической резистентности также можно отнести:

Признаки нарушения осмотической устойчивости

Симптомы такого отклонения бывают следующими:

Сфероциты (шарообразные эритроциты) менее устойчивы к осмотическому давлению

Зависимость резистентности от формы и зрелости эритроцита

Осмотическая стойкость зависит от формы и возраста клеток. В норме эритроциты имеют невысокий индекс сферичности, но в крови могут присутствовать элементы шарообразной формы, которые отличаются более низкой устойчивостью к разрушению. При такой форме значительно снижается резистентность, которая в этом случае составляет 0,4-0,6 % при норме 0,32-0,44. Сферическая форма может быть наследственно обусловлена. Кроме того, она наблюдается у клеток, которые завершают свой жизненный цикл.

Вывод

Таким образом, можно сделать вывод о том, что более резистентные – это молодые красные тельца, появляющиеся в крови после выхода из костного мозга и имеющие небольшой индекс сферичности.

Вконтакте

Одноклассники

Facebook

Google+

serdec.ru

ГЕМОСТАЗ тема 3 блок 1 второй семестр

Нарушения физико-химических свойств крови.

1. понятие об осмотической резистентности эритроцитов и механизмах ее нарушения при анемиях. В изотоническом растворе (0.85%) эритроциты сохраняют свой объем, а в гипертоническом растворе теряют воду, сморщиваются. В гипотоническом они поглощают воду, их объем увеличивается до определенного критического уровня, повышение которого сопровождается гемолизом, выходом гемоглобина в кровь. Осмотической резистентностью эритроцитов называют устойчивость их в гипотонических растворах. Минимальную резистентность определяют по гипотоническому раствору хлористого натрия такой концентрации, при которой гемолизируются только наименее устойчивые эритроциты. Максимальная осмотическая резистентность соответствует раствору хлористого натрия, в котором полностью гемолизируются все эритроциты. Осмотическая стойкость эритроцитов зависит от степени их зрелости, формы и от изменения состава плазмы. Форма эритроцитов характеризуется соотношением между его толщиной и диаметром. Это соотношение называется индексом сферичности и соответствует в норме 0.27 - 0.28. индекс сферичности может значительно превышать норму, например, при наследственной сфероцитарной анемии, когда наследуются шаровидные эритроциты. При этом заболевании отмечается резкое снижение осмотической стойкости эритроцитов, минимальная резистентность их равняется 0.6-0.7% хлористого натрия. Сфероидную форму приобретают эритроциты, завершающие жизненный цикл. Более осмотически стойкими являются эритроциты, поступившие в кровоток и костного мозга, в особенности менее зрелые клетки (ретикулоциты, полихроматофилы), которые имеют уплощенную дисковидную форму и малый индекс сферичности.

Исследование осмотической резистентности эритроцитов показано при подозрении на их патологию и усиленный гемолиз. Эритроциты помещают в гипотонические растворы хлорида натрия разной концентрации. Гемолиз у здорового человека начинается в 0.46% растворе – минимальная граница резистентности, а полный гемолиз происходит в 0.30% растворе – максимальная граница резистентности. Наибольшая ОРЭ наблюдается у новорожденных, затем она постепенно уменьшается.

Снижение ОРЭ вызывают:

- гемолитические анемии (наследственный сфероцитоз, стоматоцитоз, случаи приобретенной иммунной гемолитической анемии);

- В12-дефицитная анемия;

- токсические (отравление свинцом) анемии;

- нарушение функции селезенки, цирроз печени;

миелолейкоз.

Повышение ОРЭ вызывают:

- гипохромные микроцитарные анемии (ЖДА);

- планоцитоз (после спленэктомии, в результате заболеваний печени;

- гемоглобинозы (талассемия).

2. причины, механизмы и диагностическое значение нарушений СОЭ

определением СОЭ широко пользуются в клинике с диагностической целью. В норме СОЭ составляет в среднем у мужчин 1-10 мм\ч и у женщин 2-15 мм\ч. Величина СОЭ меняется при многих заболеваниях и зависит от следующих факторов:

- от количественного и качественного состава белков плазмы крови. Например, при воспалительных процессах и некоторых инфекционных заболеваниях увеличивается в крови содержание крупнодисперсных белков (глобулинов и фибриногена), что ведет к ускорению СОЭ. В нормальной среде отрицательно заряженные эритроциты взаимно отталкиваются. Слабо заряженные крупнодисперсные белки, адсорбируясь на эритроцитах, уменьшают их поверхностный заряд, эритроциты начинают сближаться и быстрее оседают.

- от вязкости крови и количества эритроцитов. Ускорение СОЭ отмечается при уменьшении вязкости крови (гидремия) и снижении числа эритроцитов (анемии). С увеличением вязкости крови (обезвоживание) и количества эритроцитов (эритремия) СОЭ замедляется.

- от содержания холестерина и лецитина в крови. Отмечено, что холестерин ускоряет СОЭ, так как адсорбируется на эритроцитах. Лецитин замедляет СОЭ.

- от изменения относительной плотности эритроцитов. Например, при введении в кровь гипертонического раствора эритроциты теряют воду, сморщиваются, их относительная плотность увеличивается, СОЭ ускоряется. При гиперкапнии (асфиксия, сердечная недостаточность) эритроциты, напротив, вбирают воду, их относительная плотность уменьшается, СОЭ замедляется.

В СОЭ ускоряется при:

- интенсивной физической нагрузке и во второй половине беременности;

- при уменьшении числа эритроцитов в объемной единице крови (анемия, гипергидратация),алкалоз;

- инфекционные болезни (грипп, брюшной тиф);

- туберкулез (постепенное увеличение СОЭ является прогностически неблагоприятным признаком, а уменьшение СОЭ обычно свидетельствует о стихании процесса);

- системные заболевания соединительной ткани (острый ревматизм – особенно суставные формы, диссеминированная красная волчанка, узелковый полиартериит, системная склеродермия, дерматомиозит);

- гипо- и гипертиреоз;

- обострение эндокардита (СОЭ увеличивается, если порок сердца развивается в условиях рецидива ревматизма, в отличие от пороков сердца без ревматического процесса);

- инфаркты внутренних органов (миокарда, легких, почек). Увеличение СОЭ является весьма важным симптомом у больных ОИМ, СОЭ начинает увеличиваться на 2-4 день после возникновения инфаркта;

- воспалительные заболевания печени и ЖВП, гиперхолестеринемия, цирроз печени, язвенная болезнь желудка и 12-ти ПК;

- гнойные и септические процессы (абсцесс легкого, эмпиема плевры, перитонит);

- гипоальбуминемия, нефротический синдром, гиперазотемия, отравления свинцом и мышьяком;

- увеличение содержания гамма- и бета-глобулинов или фибриногена в крови, миеломная болезнь, криоглобулинемия, макроглобулинемия;

- лейкозы, макроцитоз;

- значительный некроз ткани, особенно злокачественные опухоли;

- в случае хирургических заболеваний увеличение СОЭ указывает на воспалительный характер основного процесса.

СОЭ может не увеличиваться в следующих случаях:

- ранний период беременности, внематочная беременность до ее прерывания;

- первые 24 часа острого аппендицита;

- стенокардия, острое заболевание почек и сердца;

- вирусная инфекция без осложнений, инфекционный мононуклеоз, тифоидная лихорадка, приступ малярии;

- острая аллергия, дегенеративный артрит;

- пептическая язва.

Снижение СОЭ вызывают:

- увеличение вязкости крови, гипогидратация, гиперальбуминемия, недостаточность кровообращения, ацидоз;

- гипофибриногенемия (ДВС-синдром, поражение паренхимы печени), кахексия;

- усиление антикоагуляции;

- желтуха, увеличение содержания желчных кислот и пигментов, заболевания печени (вирусный гепатит). Увеличение СОЭ у этих больных настораживает в отношении неблагоприятного течения процесса (дистрофические изменения в печени). Повышение СОЭ у больного с подпеченочной желтухой и увеличением печени также рассматривается как неблагоприятный признак и нередко указывает на наличие злокачественной опухоли;

- прием хлорида кальция, салицилатов и препаратов ртути;

- увеличение числа эритроцитов в объемной единице крови, полицитемия;

- аномалии эритроцитов, особенно – серповидные эритроциты, наследственный сфероцитоз, акантоцитоз, микроцитоз;

- увеличение числа лейкоцитов в объемной единице крови.

3. ОСНОВНЫЕ МЕХАНИЗМЫ НАРУШЕНИЙ ОБЪЁМА КРОВИ И ГЕМАТОКРИТА.

Общий объём крови принято рассчитывать от массы тела (примерно 6-8%). У взрослого мужчины объём кро­ви составляет около 5 л. При этом 3,5 - 4 л обычно цир­кулирует в сосудистом русле и полостях сердца (цирку­лирующая фракция крови), а 1,5—2 л депонировано в сосудах органов брюшной полости, лёгких, подкожной клетчатки и других тканей (депонированная фракция). Форменные элементы составляют 36—48% от общего объёма крови.

Гематокрит Ht — отноше­ние объёма форменных элементов крови к объёму плаз­мы — в норме равен у мужчин 0,41-0,50, у женщин 0,36-0,42.

Нарушения объёма крови.

При различных патологических процессах, болезнях и болезненных состояни­ях может изменяться как общий объём крови, так и соотношение между её форменными элементами и плазмой (Ht). Выделяют три группы типовых форм нарушений: нормоволемии, гиповолемии, гиперволемии.

Нормоволемии— состояния, характеризующиеся нормальным общим объё­мом крови, сочетающимся со сниженным или увеличенным Ht. Различают олигоцитемические и полицитемические нормоволемии.

Олигоцитемическая нормоволемия— состояние, характеризующееся нормаль­ным общим объёмом крови при уменьшении количества её форменных эле­ментов (главным образом эритроцитов), что сопровождается падением величи­ны Ht ниже нормы.

Основные причины олигоцитемической нормоволемии.

- Массированный гемолиз эритроцитов (например, при образовании антиэритроцитарных Ig, действии гемолитических веществ — змеиного яда, соединений свинца, мышьяка, фенилгидразина и др.);

- Длительное и выраженное угнетение гемопоэза, главным образом эритропоэза (например, при апластических анемиях);

- Состояния после острой значительной кровопотери. В этом случае общий объём крови сравнительно быстро нормализуется в результате транспорта жидкости из тканей в сосудистое русло, а число форменных элементов крови остаётся ещё сниженным;

Проявления олигоцитемической нормоволемии.

- Анемия (в связи со снижением числа эритроцитов) и как следствие — гемическая гипоксия;

- Тромбоцитопения (при кровопотере или реакциях иммунной аутоагрессии в отношении тромбоцитов);

- Снижение свёртываемости крови, сочетающееся нередко с геморрагичес­ким синдромом;

- Лейкопения, обусловливающая понижение противоинфекционной резистентности организма.

- Уменьшение вязкости крови. Наблюдается в условиях восстановления объё­ма жидкой части крови при значительном уменьшении числа ее формен­ных элементов (например, на этапе гидремической компенсации при ост­рой кровопотере).

Полицитемическая нормоволемия— состояние, характеризующееся нормаль­ным общим объёмом крови при увеличении числа её форменных элементов, что сопровождается увеличением Ht выше нормы.

Наиболее частые причины полицитемической нормоволемии: инфузии па­циентам фракций форменных элементов крови (эритроцитарной, лейкоцитарной или тромбоцитарной массы), хроническая гипоксия (вызывает эритроцитоз вследствие активации эритропоэза) и эритремии.

Проявления полицитемической нормоволемии: увеличение показателя вяз­кости крови, развитие тромботического синдрома, нарушения микрогемоциркуляции (замедление тока крови в микрососудах, стаз), которые обуслов­ливают снижение транскапиллярного обмена в тканях, а также артериальная гипертензия (например, в результате увеличения сердечного выброса).

Гиперволемии— состояния, характеризующиеся увеличением общего объёма крови и обычно изменением Ht. Различают нормоцитемическую, олигоцитемическую и полицитемическую гиперволемии.

Нормоцитемическая гиперволемия(простая) — состояние, проявляющееся эквивалентным увеличением объёма форменных элементов и жидкой части ОЦК. Ht остаётся в пределах нормы.

Основные причины простой гиперволемии: переливание большого объёма крови, острые гипоксические состояния, сопровождающиеся выбросом крови из её депо, а также значительная физическая нагрузка, приводящая к гипоксии.

Олигоцитемическая гиперволемия(гидремия, гемодилюция) — состояние, характеризующееся увеличением общего объёма крови вследствие возрастания её жидкой части. Показатель Ht при этом ниже нормы. Причины: избыточное поступление в организм жидкости при патологической жажде (например, у пациентов с СД) и введении в сосудистое русло большого количества плазмозаменителей или плазмы крови. Снижение выведения жидкости из организма в результате недостаточнос­ти экскреторной функции почек (например, при почечной недостаточнос­ти), гиперпродукции АДГ, гиперосмоляльности плазмы крови.

Полицитемическая гиперволемия— состояние, проявляющееся увеличением общего объёма крови вследствие преимущественного повышения числа её фор­менных элементов. В связи с этим Ht превышает верхнюю границу нормы. Основные причины полицитемической гиперволемии: полицитемии (эритроцитозы) — группа патологических состояний, ха­рактеризующихся увеличением числа эритроцитов (независимо от числа лейкоцитов, тромбоцитов). Эритремия сопровождается значительным эритроцитозом и как следствие — повышенным Ht. Хроническая гипоксия любого типа (гемическая, дыхательная, циркуляторная, тканевая и др.). Полицитемия при этом отражает гиперрегенераторное состояние кост­ного мозга, которое сопровождается повышенной пролиферацией кле­ток крови, главным образом эритроцитов, и выбросом их в сосудистое русло. Полицитемическая гиперволемия выявляется при хроничес­кой недостаточности кровообращения, альвеолярной гиповентиляции, снижении кислородной ёмкости крови и эффективности био­логического окисления, при экзогенной (нормо- и гипобарической) гипоксии.

Проявления гиперволемий. Для гиперволемий характерны увеличение сердечного выброса и повыше­ние АД.

- Увеличение сердечного выброса является результатом компенсаторной гиперфункции сердца в связи с увеличением объёма крови. Однако при декомпенсации сердца и развитии его недостаточности сердечный выброс, как правило, снижается.

- Повышение АД обусловлено главным образом увеличением сердечного выброса, а также ОЦК и тонуса резистивных сосудов.

- Для истинной полицитемии характерны также существенное увеличение вязкости крови, агрегация и агглютинация форменных элементов крови, диссеминированное тромбообразование, расстройства микроциркуляции.

Гиповолемии— состояния, характеризующиеся уменьшением общего объёма крови и, как правило, нарушением соотношения её форменных элементов и плазмы. Различают нормоцитемическую, олигоцитемическую и полицитемическую гиповолемии.

Нормоцитемическая гиповолемия— состояние, проявляющееся уменьшени­ем общего объёма крови при сохранении Ht в пределах нормы.

Наиболее частые причины нормоцитемической гиповолемии: острая кровопотеря, шоковые состояния, вазодилатационный коллапс. В двух последних случаях нормоцитемическая гиповолемия развивается в результате депони­рования большого объёма крови в венозных (ёмкостных) сосудах и значи­тельного снижения в связи с этим ОЦК.

Проявления нормоцитемической гиповолемии определяются характером при­чины, вызвавшей её (кровопотеря, шок, коллапс), а также включением меха­низмов компенсации, направленных на устранение острой гипоксии.

Олигоцитемическая гиповолемия— состояние, характеризующееся уменьше­нием общего объёма крови с преимущественным снижением числа её формен­ных элементов. Ht при этом ниже нормы.

Наиболее частые причины олигоцитемической гиповолемии: Состояния после острой кровопотери (на том этапе, когда транспорт жид­кости из тканей и выход депонированной крови в сосудистое русло ещё не устраняет гиповолемии, а поступление клеток крови из органов гемопоэза — дефицита эритроцитов). Эритропении в результате массированного гемолиза эритроцитов (напри­мер, при ожогах большой поверхности тела, когда гемолиз сочетается с потерей организмом жидкой части крови в связи с плазморрагией) и по­давления эритропоэза (например, при апластических или арегенераторных состояниях).

Проявления олигоцитемической гиповолемии: Снижение показателя кислородной ёмкости крови (в результате эритро­пении). Признаки гипоксии (например, снижение содержания кислорода в крови, ацидоз, уменьшение рО2 венозной крови и др.). Расстройства органотканевого кровообращения и микрогемоциркуляции различной степени, обусловленные, помимо прочих факторов, уменьше­нием ОЦК.

Полицитемическая гиповолемия— состояние, при котором снижение общего объёма крови в организме обусловлено в основном уменьшением объема плаз­мы. Показатель Ht при этом состоянии выше диапазона нормы.

Наиболее частые причины полицитемической гиповолемии: Состояния, вызывающие повышенную потерю организмом жидкости: по­вторная рвота (например, у беременных или в результате экзогенной ин­токсикации), длительная диарея (например, при нарушении мембранного пищеварения, кишечных токсикоинфекциях), полиурия (например, при почечной недостаточности), повышенное и длительное потоотделение (на­пример, в условиях жаркого климата или в горячих цехах на производстве) и обширные ожоги кожи (сопровождающиеся плазморрагией). Состояния, препятствующие достаточному поступлению жидкости в организм (водное «голодание»): отсутствие питьевой воды и невозможность питья воды (например, в результате спазма мускулатуры при столбняке или бешенстве).

Проявления полицитемической гиповолемии: Нарушения органотканевой микрогемоциркуляции в связи с гиповолемией и полицитемией. Повышение вязкости крови, агрегация форменных элементов крови в микрососудах органов и тканей и диссеминированный микротромбоз. Признаки основной патологии, вызывающей полицитемическую гиповолемию (например, шока, несахарного диабета, почечной недостаточности, ожоговой болезни и др.).

4. МЕХАНИЗМЫ ГЕМОСТАЗА. ВИДЫ НАРУШЕНИЙ СИСТЕМЫ ГЕМОСТАЗА.

В свертывании крови (гемостазе) различают два звена: под клеточным понимают склеивание форменных элементов крови между собой (агрегация), их прикрепление к сосудистой стенке или чужеродной поверхности (адгезия), а также высвобождение из форменных элементов веществ, которые активируют плазменный гемостаз. Тромбоциты главный компонент клеточного гемостаза, в них содержатся следующие факторы свертывания:

р1 тромбоцитарный акцелератор, глобулин, идентичный фактору 5 плазмы;

р2 акцелератор тромбина, ускоряет переход фибриногена в фибрин;

р3 тромбоцитарный тромбопластин;

р4 антигепариновый фактор;

р5 фибриноген тромбоцитов;

р6 тромбостенин – белок, обеспечивающий движение тромбоцитов и образование псевдоподий, сокращая тромбоциты и связанные сними форменные элементы крови, и фибрин способствуют ретракции сгустка;

р7 антифибринолитический фактор;

р8 активатор фибринолиза;

р9 фибринстабилизирующий фактор;

р10 серотонин, который суживает сосуды, стимулирует агрегацию;

р11 АДФ, стимулятор агрегации.

Обнажающийся при повреждении эндотелия фибронектин обеспечивает адгезию тромбоцитов и макрофагов к коллагену. В то же время фактор Виллебранда связывается с тромбоцитарными рецепторами (интегринами 1б,2б/3а). Эти рецепторы появляются на поверхности тромбоцитов только после активации (высвобождения ионов Са++). Связывание тромбоцитов с адгезивными белками приводит к их распластыванию на субэндотелии сосудов с последующей активацией под влиянием тромбина, фактора агрегации тромбоцитов, АДФ, катехоламинов, серотонина, выделяющихся из сосудистой стенки, гемолизированных эритроцитов, первично адгезировавших тромбоцитов.

Параллельно адгезии происходит агрегация тромбоцитов – набухание и склеивание между собой с образованием отростков, вследствие чего возникает рост гемостатической пробки. Таким образом, важнейшими стимуляторами первой волны агрегации тромбоцитов являются АДФ, коллаген. катехоламины, серотонин. Эти вещества (активаторы тромбоцитов) взаимодействуют со специализированными рецепторами, представленными на мембране тромбоцитов, что сопровождается увеличением Са++ в цитоплазме за счет выхода его из внутритромбоцитарных депо или поступления в клетку извне. Увеличение Са++ в тромбоцитах сопровождается цепью реакций: появлением рецепторов 2б\3а на мембране тромбоцитов, сокращением контрактильных белков, высвобождением из гранул тромбоцитов фибриногена, тромбоспондина, акцелератора 5 фактора, 4 тромбоцитарного (антигепариновый) фактора, фактора Виллебранда, митогенного фактора. В то же время из плотных гранул выходят АДФ, серотонин, адреналин и норадреналин, усиливающие процесс агрегации и формирующие его вторую волну. Под влиянием кальция активируется фосфолипаза А2, освобождаются продукты биотрансформации фосфолипидов – фактор агрегации тромбоцитов, простагландины F2, G2, h3, тромбоксан. Продолжительность биологического действия простагландинов, тромбоксана, простациклина всего несколько минут, но их значение чрезвычайно высоко. Они индуцируют цепную реакцию активации тромбоцитарного звена, в результате один тромбоцит активирует много других.

Тромбоспондин эндотелиального, тромбоцитарного, мононуклеарно-макрофагального происхождения в зоне воспаления связывает тромбоциты с фибрином, коллагеном, эндотелиальными клетками, макрофагами, тромбоцитами, благодаря чему агрегация приобретает необратимый характер. Активация внесосудистого (клеточного) звена системы гемостаза неизменно связана с одновременной активацией протромбиназной активности и последующим каскадом реакций образования фибрина.

Плазменный гемостаз представляет собой каскад реакций, в которых участвуют факторы свертывания крови, завершающийся процессом фибринообразования. Плазменный гемостаз осуществляется в основном белками, называемыми плазменными факторами свертывания.

Различают следующие факторы свертывания:

Фактор I фибриноген, образуется в основном в печени.

Фактор II протромбин, образуется в печени в присутствии витамина К.

Фактор III тромбопластин (тканевой фактор), фосфолипид, являющийся компонентом клеточных мембран.

Фактор IV ионы Са++, участвуют в образовании комплексов в клеточном гемостазе (агрегация, адгезия, ретракция).

Фактор V проакцелерин, входящий в состав протромбиназы.

Фактор VI акцелерин, активированный проакцелерин.

Фактор VII проконвертин, образуется в печени под влиянием витамина К, активирует внешний и внутренний пути свертывания.

Фактор VIII антигемофильный глобулин А, находится в комплексе с фактором Виллебранда, активирует внешний и внутренний пути свертывания.

Фактор IX антигемофильный глобулин В, участвует в активации факторов VII и X.

Фактор X Стюарта-Прауэра, образуется под влиянием витамина К, является основным компонентом протромбиназы.

Фактор XI Розенталя активатор фактора IX.

Фактор XII контакта или Хагемана активируется чужеродной поверхностью, калликреином, адреналином, запускает внутренний механизм свертывания.

Фактор XIII фибринстабилизирующий.

Фактор Флетчера участвует в активации фактора V и IX, плазминогена, переводит кининоген в кинин.

Фактор Фитцжеральда-Вильямса участвует в активации фактора XII и плазминогена.

Инициация фибринообразования на поврежденной поверхности сосудистой стенки или в участке замедленного кровотока развивается по внутреннему пути. Появление в кровотоке обломков клеточных мембран при травме или каких либо состояниях запускает внешний механизм свертывания. Оба механизма сходятся на ключевом этапе активации X (Стюарта-Прауэра) фактора.

Активация внутреннего механизма формирования протромбиназной активности возникает при повреждении эндотелия и контакте крови с различными компонентами субэндотелия, особенно коллагеном. Поверхность коллагена и активированных тромбоцитов имеет большое сродство к фактору ХIIХагемана, вызывает его активацию и превращение в XIIа фактор. Или же активация его происходит путем ферментного расщепления калликреином, плазмином и другими протеазами. Т.о. существует два механизма активации XII фактора: контактный с образованием XIIа фактора и ферментный с образованием XIIf, причем XIIa оказывает активирующее воздействие на коагуляционный гемостаз, а XIIf на калликреин-кининовую систему и фибринолиз.

Под воздействием XIIa фактора активируется XI (Розенталя) плазменный фактор свертывания крови с развитием последующего стереотипного каскада реакций, внутреннего механизма формирования протромбиназы (активация Х фактора, который является основным компонентом протромбиназы). В этой же реакции идет образование и калликреина, а он в свою очередь еще больше активирует фактор XII.

Активный фактор Розенталя XIa протеолитически активирует фактор IX (антигемофильный глобулин В), который в присутствии VIII активированного (антигемофильный глобулин А)фактора переводит неактивный X в Xa (протромбиназа).

Внешний механизм работает так: при поступлении в плазму тканевого тромбопластина (фактор III) из эндотелиальных клеток, гладкомышечных элементов сосуда и др, и в присутствии ионов кальция (фактор IV) образуется комплекс с циркулирующим в крови VII фактором (проконвертин) при активации превращается в конвертин. Он в свою очередь контактирует с IХ, который способствует активации Х Хагемана.

Активный Х фактор образованный при обоих механизмов в присутствии ионов Са++ связывается с фактором V (проакцелерин, составная часть протромбиназы), в результате образуется активная протромбиназа. На этом заканчивается первая фаза свертывания крови.

Далее следует вторая фаза: этот образовавшийся фермент расщепляет на поверхности тромбоцитов протромбин и образуется тромбин.

Третья фаза свертывания – трансформация неактивного фибриногена в фибрин под влиянием тромбина. Известно, что фибриноген глобулярный гликопротеин, состоит из двух одинаковых субъединиц. Каждая из субъединиц состоит из трех цепей – альфа, бета и гамма. Под влиянием тромбина вначале от молекулы фибриногена отщепляются пептиды А, при этом образуются неполные мономеры фибрина, а затем В, что приводит к образованию полных мономеров. Появление в крови мономеров А,В служит признаком внутрисосудистого свертывания крови. Также тромбин активирует XIII фибринстабилизирующий фактор и фермент трансглютаминазу, которые сшивают фибриновые нити и запускают ретракцию. Стабилизация фибрина делает его нерастворимым полимером, повышает его устойчивость к протеазам, увеличивает прочность и эластичность сгустка.

В организме существуют факторы, регулирующие степень формирования фибрина (антикоагулянты) – антитромбин III, протеин С, протеинSи ингибитор пути тканевого фактора. Также указана роль кофактора гепарина.

В крови имеется определенная группа факторов, регулирующих интенсивность внутрисосудистого образования фибрина путем его растворения. Это происходит за счет действия протеолитического фермента плазмина (фибринолизин). Плазмин образуется из неактивного плазминогена (активируют его тканевой и мочевой фактор). В плазме содержатся и ограничители действия плазмина (антиплазмин и альфа-2-макроглобулин), либо тормозятся активаторы плазминогена (ИАП 1и 2).

studfiles.net

3. Плазма крови [1976 - - Физиология человека]

В 100 мл плазмы крови здорового человека содержится около 93 г воды. Остальная часть плазмы состоит из органических и неорганических веществ. Плазма содержит минеральные вещества, белки (в том числе ферменты), углеводы, жиры, продукты обмена веществ, гормоны, витамины.

Минеральные вещества плазмы представлены солями: хлоридами, фосфатами, карбонатами и сульфатами натрия, калия, кальция, магния. Они могут находиться как в виде ионов, так и в неионизированном состоянии.

Осмотическое давление плазмы крови

Даже незначительные нарушения солевого состава плазмы могут оказаться губительными для многих тканей, и прежде всего для клеток самой крови. Суммарная концентрация минеральных солей, белков, глюкозы, мочевины и других веществ, растворенных в плазме, создает осмотическое давление.

Явления осмоса возникают везде, где имеются два раствора различной концентрации, разделенные полупроницаемой мембраной, через которую легко проходит растворитель (вода), но не проходят молекулы растворенного вещества. В этих условиях растворитель движется в сторону раствора с большей концентрацией растворенного вещества. Одностороннюю диффузию жидкости через полупроницаемую перегородку называют осмосом (рис. 4). Сила, которая вызывает движение растворителя через полупроницаемую мембрану, есть осмотическое давление. С помощью специальных методов удалось установить, что осмотическое давление плазмы крови человека удерживается на постоянном уровне и составляет 7,6 атм (1 атм ≈ 105н/м2).

Рис. 4. Осмотическое давление: 1 - чистый растворитель; 2 - солевой раствор; 3 - полупроницаемая перепонка, разделяющая сосуд на две части; длина стрелок показывает скорость движения воды через перепонку; А - осмос, начавшийся после заполнения жидкостью обеих частей сосуда; Б - установление равновесия; Н-давление, уравновешивающее осмос

Осмотическое давление плазмы в основном создается неорганическими солями, поскольку концентрация сахара, белков, мочевины и других органических веществ, растворенных в плазме, невелика.

Благодаря осмотическому давлению происходит проникновение жидкости через клеточные оболочки, что обеспечивает обмен воды между кровью и тканями.

Постоянство осмотического давления крови имеет важное значение для жизнедеятельности клеток организма. Мембраны многих клеток, в том числе и клеток крови, тоже являются полупроницаемыми. Поэтому при помещении кровяных телец в растворы с различной концентрацией солей, а следовательно, и с разным осмотическим давлением в клетках крови за счет осмотических сил происходят серьезные изменения.

Солевой раствор, имеющий такое же осмотическое давление, как плазма крови, называют изотоническим раствором. Для человека изотоничен 0,9-процентный раствор поваренной соли (NaCl), а для лягушки - 0,6-процентный раствор этой же соли.

Солевой раствор, осмотическое давление которого выше, чем осмотическое давление плазмы крови, называют гипертоническим; если осмотическое давление раствора ниже, чем в плазме крови, то такой раствор называют гипотоническим.

Гипертонический раствор (обычно это 10-процентный раствор поваренной соли) применяют при лечении гнойных ран. Если на рану наложить повязку с гипертоническим раствором, то жидкость из раны будет выходить наружу, на повязку, поскольку концентрация солей в ней выше, чем внутри раны. При этом жидкость будет увлекать за собой гной, микробы, отмершие частицы тканей, и в результате рана скорее очистится и заживет.

Поскольку растворитель движется всегда в сторону раствора с более высоким осмотическим давлением, то при погружении эритроцитов в гипотонический раствор вода, по законам осмоса, интенсивно начинает проникать внутрь клеток. Эритроциты набухают, их оболочки разрываются, и содержимое поступает в раствор. Наблюдается гемолиз. Кровь, эритроциты которой подверглись гемолизу, становится прозрачной, или, как иногда говорят, лаковой.

В крови человека гемолиз начинается при помещении эритроцитов в 0,44-0,48-процентный раствор NaCl, а в 0,28-0,32-процентных растворах NaCl уже почти все эритроциты оказываются разрушенными. Если эритроциты попадают в гипертонический раствор, они сморщиваются. Убедитесь в этом, проделав опыты 4 и 5.

Примечание. Прежде чем проводить лабораторные работы по исследованию крови, необходимо освоить технику взятия из пальца крови для анализа.

Вначале и испытуемый и исследователь тщательно моют руки с мылом. Затем у испытуемого протирают спиртом безымянный (IV) палец левой руки. Кожу мякоти этого пальца прокалывают острой и предварительно простерилизованной специальной иглой-перышком. При надавливании на палец близ места укола выступает кровь.

Первую каплю крови убирают сухой ватой, а следующую используют для исследования. Необходимо следить, чтобы капля не растекалась по коже пальца. Кровь набирают в стеклянный капилляр, погрузив его конец в основание капли и придав капилляру горизонтальное положение.

После взятия крови палец вновь протирают ваткой, смоченной спиртом, а затем смазывают иодом.

Опыт 4

На один край предметного стекла поместите каплю изотонического (0,9-процентного) раствора NaCl, а на другой - каплю гипотонического (0,3-процентного) раствора NaCl. Проколите кожу пальца иглой обычным способом и стеклянной палочкой перенесите по капле крови в каждую каплю раствора. Жидкости перемешайте, накройте покровными стеклами и рассмотрите под микроскопом (лучше при большом увеличении). Видно набухание большинства эритроцитов в гипотоническом растворе. Некоторые из эритроцитов оказываются разрушенными. (Сравните с эритроцитами в изотоническом растворе.)

Опыт 5

Возьмите другое предметное стекло. На один край его поместите каплю 0,9-процентного раствора NaCl, а на другой - каплю гипертонического (10-процентного) раствора NaCl. Внесите в каждую каплю растворов по капле крови и после перемешивания рассмотрите их под микроскопом. В гипертоническом растворе происходит уменьшение размеров эритроцитов, их сморщивание, которое легко обнаруживается по характерному фестончатому их краю. В изотоническом растворе край у эритроцитов гладкий.

Несмотря на то что в кровь может поступать разное количество воды и минеральных солей, осмотическое давление крови поддерживается на постоянном уровне. Это достигается благодаря деятельности почек, потовых желез, через которые из организма удаляются вода, соли и другие продукты обмена веществ.

Физиологический раствор

Для нормальной деятельности организма важно не только количественное содержание солей в плазме крови, что обеспечивает определенное осмотическое давление. Чрезвычайно важен и качественный состав этих солей. Изотонический раствор хлористого натрия не способен длительное время поддерживать работу омываемого им органа. Сердце, например, остановится, если из протекающей через него жидкости полностью исключить соли кальция, то же произойдет при избытке солей калия.

Растворы, которые по своему качественному составу и концентрации солей соответствуют составу плазмы, называют физиологическими растворами. Они различны для разных животных. В физиологии часто применяют жидкости Рингера и Тироде (табл. 1).

Таблица1. Состав жидкостей Рингера и Тироде (в г на 100 мл воды)

В жидкости для теплокровных животных часто, помимо солей, добавляют еще глюкозу и насыщают раствор кислородом. Такие жидкости используют для поддержания жизнедеятельности изолированных от тела органов, а также как заменители крови при кровопотерях.

Реакция крови

Плазма крови имеет не только постоянное осмотическое давление и определенный качественный состав солей, в ней поддерживается постоянство реакции. Практически реакция среды определяется концентрацией водородных ионов. Для характеристики реакции среды пользуются водородным показателем, обозначаемым рН. (Водородный показатель - логарифм концентрации водородных ионов с обратным знаком.) Для дистиллированной воды величина рН составляет 7,07, кислая среда характеризуется рН меньше 7,07, а щелочная - более 7,07. Водородный показатель крови человека при температуре тела 37°С равен 7,36. Активная реакция крови слабощелочная. Даже незначительные сдвиги величины рН крови нарушают деятельность организма и угрожают его жизни. Вместе с тем в процессе жизнедеятельности в результате обмена веществ в тканях происходит образование значительных количеств кислых продуктов, например молочной кислоты при физической работе. При усиленном дыхании, когда из крови удаляется значительное количество угольной кислоты, кровь может подщелачиваться. Организм обычно быстро справляется с такими отклонениями величины рН. Эту функцию осуществляют буферные вещества, находящиеся в крови. К ним относятся гемоглобин, кислые соли угольной кислоты (гидрокарбонаты), соли фосфорной кислоты (фосфаты) и белки крови.

Постоянство реакции крови поддерживается деятельностью легких, через которые удаляется из организма углекислый газ; через почки и потовые железы выводится избыток веществ, имеющих кислую или щелочную реакцию.

Белки плазмы крови

Из органических веществ плазмы наибольшее значение имеют белки. Они обеспечивают распределение воды между кровью и тканевой жидкостью, поддерживая водно-солевое равновесие в организме. Белки участвуют в образовании защитных иммунных тел, связывают и обезвреживают проникшие в организм ядовитые вещества. Белок плазмы фибриноген - основной фактор свертывания крови. Белки придают крови необходимую вязкость, что важно для поддержания на постоянном уровне давления крови.

anfiz.ru


Смотрите также