Обмен билирубина схема


Определение, классификация желтухи

Желтуха — это синдром, характеризующийся желтушным окрашиванием кожных покровов, слизистых оболочек и склер, обусловленный повышенным накоплением билирубина в сыворотке крови, а также других жидкостях и тканях организма.

Выявление желтухи не представляет трудностей, т.к. это хорошо заметный признак, обращающий на себя внимание не только медицинских работников, но и самого больного и окружающих его. Всегда значительно сложнее выяснить ее причину, т.к. желтуха наблюдается при многих как инфекционных, так и неинфекционных заболеваниях. Часто больные с механической желтухой ошибочно госпитализируются в инфекционный стационар с подозрением на инфекционный характер, что приводит к запоздалой диагностике и упущению времени для оптимального вмешательства.

В зависимости от первичной локализации патологического процесса, приводящего к развитию желтухи, и механизма возникновения выделяют следующие виды желтухи:

• Надпеченочная или гемолитическая желтуха — вызвана главным образом повышенной продукцией билирубина в связи с усилением распада эритроцитов и реже при нарушении плазменного транспорта билирубина. К ней относятся различные типы гемолитической желтухи — врожденные дефекты эритроцитов, аутоиммунные гемолитические желтухи, ассоциированные с В12- (фолиево-) дефицитной анемией, рассасывающиеся массивные гематомы, инфаркты, различного рода интоксикации, отравления. Повышенный гемолиз независимо от его этиологии всегда приводит к характерной клинической триаде: анемия, желтуха с лимонным оттенком, спленомегалия.

• Печеночная или паренхиматозная желтуха — обусловлена поражением гепатоцитов и/или холангиол. По ведущему механизму можно выделить несколько вариантов печеночных желтух. Она может быть связана с нарушением экскреции и захвата билирубина, регургитацией билирубина. Это наблюдается при остром и хроническом гепатитах, гепатозе, циррозе печени (печеночно-клеточная желтуха). В других случаях нарушаются экскреция билирубина и регургитация его. Подобный тип отмечается при холестатическом гепатите, первичном билиарном циррозе печени, идиопатическом доброкачественном возвратном холестазе, при печеночно-клеточных поражениях (холестатическая печеночная желтуха). В основе желтух может лежать нарушение конъюгации и захвата билирубина. Это отмечается при энзимопатической желтухе при синдромах Жильбера, Криглера-Найяра. Печеночная желтуха может быть связана с нарушением экскреции билирубина, например при синдромах Дабина-Джонсона и Ротора.

• Механическая или обтурационная желтуха — осложнение патологических процессов, нарушающих отток желчи на различных уровнях желчевыводящих протоков.

Обмен билирубина в организме

Основной источник билирубина — гемоглобин. Он превращается в билирубин в клетках ретикуло-гистиоцитарной системы, главным образом в печени, селезенке, костном мозге. За сутки распадается примерно 1% эритроцитов и из их гемоглобина образуется 10–300 мг билирубина. Приблизительно 20% билирубина образуется не из гемоглобина зрелых эритроцитов, а из других гемсодержащих веществ, этот билирубин называется шунтовым или ранним. Он образуется из гемоглобина распадающихся в костном мозге эритробластов, незрелых ретикулоцитов, из миоглобина и др.

При разрушении эритроцитов гемоглобин расщепляется на глобин, железосодержащий гемосидерин и не содержащий железа гематоидин. Глобин распадается на аминокислоты и снова идет на построение белков организма. Железо подвергается окислению и снова используется организмом в виде ферритина. Гематоидин (порфириновое кольцо) превращается через стадию биливердина в билирубин.

Образующийся билирубин поступает в кровь. Так как он не растворим в воде при физиологическом pH крови, то для транспортировки в крови он связывается с носителем — главным образом, альбумином.

Печень выполняет три важнейшие функции в обмене билирубина: захват из крови гепатоцитами, связывание билирубина с глюкуроновой кислотой и выделение связанного (конъюгированного) билирубина из гепатоцитов в желчные капилляры. Перенос билирубина из плазмы в гепатоцит происходит в печеночных синусоидах. Свободный (непрямой, неконъюгированный) билирубин отщепляется от альбумина в цитоплазматической мембране, внутриклеточные протеины гепатоцита захватывают билирубин и ускоряют его перенес в гепатоцит.

Поступив в гепатоцит, непрямой (неконъюгированный) билирубин переносится в мембраны эндоплазматической сети, где связывается с глюкуроновой кислотой под влиянием фермента глюкуронилтрансферазы. Соединение билирубина с глюкуроновой кислотой делает его растворимым в воде, что делает возможным переход его в желчь, фильтрацию в почках и обеспечивает быструю (прямую) реакцию с диазореактивом (прямой, конъюгированный, связанный билирубин).

Далее билирубин выделяется из печени в желчь. Экскреция билирубина из гепатоцита в желчь находится под контролем гормонов гипофиза и щитовидной железы. Билирубин в желчи входит в состав макромолекулярных агрегатов (мицелл), состоящих из холестерина, фосфолипидов, желчных кислот и незначительного количества белка.

Желчь течет согласно градиенту давления: печень выделяет желчь при давлении 300–350 мм.водн.ст., далее она накапливается в пузыре, который сокращаясь, создает давление 200–250 мм.вод.ст, что достаточно для свободного истечения желчи в ДПК при условии расслабления сфинктера Одди.

Билирубин поступает в кишечник и под действием бактериальных дегидрогеназ превращается в мезобилиноген и уробилиногеновые тельца: уробилиноген и стеркобилиноген. Основное количество уробилиногена из кишечника выделяется с калом в виде стеркобилиногена (60–80 мг в сутки), на воздухе превращающегося в стеркобилин, что окрашивает кал в коричневый цвет. Часть уробилиногена всасывается через стенку кишечника и попадает в воротную вену, затем в печень, где расщепляется. Здоровая печень полностью расщепляет уробилин, поэтому в норме в моче он не определяется.

Часть стеркобилиногена через систему геморроидальных вен попадает в общий кровоток и выводится почками (около 4 мг в сутки), придавая моче нормальный соломенно-желтый цвет.

Нормальное содержание билирубина в крови:

Общий: 5,1–21,5 мкмоль/л;

непрямой (неконъюгированный, свободный): 4–16 мкмоль/л (75–85% от общего);.

прямой (конъюгированный, связанный): 1–5 мкмоль/л (15–25% от общего).

Повышение уровня общего билирубина в крови (гипербилирубинемия) свыше 27–34 мкмоль/л приводит к связыванию его эластическими волокнами кожи и конъюнктивы, что проявляется желтушным окрашиванием. Тяжесть желтухи обычно соответствует уровню билирубинемии (легкая форма — до 85 мкмоль/л, среднетяжелая — 86–169 мкмоль/л, тяжелая форма — свыше 170 мкмоль/л). При полном блоке желчных протоков ежедневно происходит повышение уровня билирубина на 30–40 мкмоль/ч (до уровня 150 мкмоль/л, далее скорость снижается).

Интенсивность желтухи зависит от кровоснабжения органа или ткани. Сначала обнаруживается желтое окрашивание склер, несколько позднее кожных покровов. Накапливаясь в коже и слизистой, билирубин в сочетании с другими пигментами прокрашивает их в светло-желтый цвет с красноватым оттенком. В дальнейшем происходит окисление билирубина в биливердин, и желтуха приобретает зеленоватый оттенок. При длительном существовании желтухи кожные покровы приобретают черновато-бронзовую окраску. Таким образом, осмотр больного позволяет решить вопрос о длительности желтухи.

studfiles.net

Обмен билирубина, как основа диагностики многих патологий

Организ человека — постоянно меняющаяся сложная организация биологических молекул. И изучение этих превращений имеет высокую ценность при диагностике многих нарушений. Например обмен билирубина является эталонным маркером сразу доя нескольких систем организма.

Краткая характеристика

Билирубин, с чисто химической точки зрения, представляет из себя твердое кристаллическое вещество. Его температура плавления значительно больше чем у щелочных металлов: 192°. За счет строения кристаллической решетки, вещество практически не растворяется в воде и некоторых органических жидкостях. Это касается практически всех спиртов, глицерина, ацетона.

Хорошую растворимость билирубин имеет в эфире, хлороформе и липидах. Последнее обстоятельство делает его молекулы липофильными. Поэтому они легко способны проникать через мембраны клеток. Кроме того, за счет наличия свободних радикальных остатков карбоновых кислот (R-coo), одна молекула может притягивать 2 протона водорода. Они, как известно, являются важнейшими компонентами дыхательной цепи митохондрий. Билирубин же приводит к ее нарушению. Как итог — энергообразование митохондрий прекращается, что отрицательно сказывается на обменных процессах клеток. Поэтому он считается токсичным веществом.

Образование билирубина

Единственное вещество из которого возможно образование билирубина — гем. Это комплексное соединение составляет основу гемоглобина, цитохромов и миоглобина. Но большая част билирубина образуется при метаболизме гема эритроцитарного происхождения.

Все эти превращения начинаются после поглощения эритроцитам макрофагами ретикулоэндотелиальной системы. Данные клетки расположены во многих частях организма. Но особенно их много в селезенке. Поэтому, иногда, ее называют «кладбище» эритроцитов.

Так вот, по истечении 3,5−4 месяцев каждая красная кровяная клетка поглощается макрофагом. Это же происходит при повреждениях ее мембраны. После того, как эритроцит попадает в полость макрофага, ферменты последнего начинают активное разрушение: мембрана и органеллы расщепляются на составные молекулы. Это же касается гемоглобина.

Его превращения происходят в несколько этапов:

  1. Под действием фермента гемоксигеназа гемоглобин распадается на гем и аминокислотные остатки. Они переносятся к ретикулярной сети. Здесь из них будут синтезированы белки.
  2. Гем теряет ион железа, 2 водорода и 1 кислород, а его кольцевая молекула размыкается и становится линейной. Теперь данное вещество называется биливердином.
  3. За счет биливердинредуктазы происходит образование билирубина. После этого его молекулы выводятся из макрофагов и попадают в кровь.

Превращения билирубина

Это важно! Не смотря на свою токсичность, билирубин практически не оказываетсвоего отрицательного действия на клетки организма. Все благодаря его быстрому связыванию с альбуминами. Но насыщенность этой связи ограничена 25 мг на 100 мл.

После выхода из макрофагов билирубин попадает в кровь. Здесь он достаточно быстро связывается с белками крови (альбумины) и переносится ими к печени. Поэтому его определение в крови практически не возможно. К тому же, более 90% этого желчного пигмента образуется при распаде эритроцитов в селезенке. А ее кровоток, как известно, подразумевает тесную связь с печеночными сосудами. Если говорить более кратко, кровь из селезенки практически вся идет к сосудам печени.

Именно в гепатоциты происходит важнейший этап — конъюгация билирубина. Так называется реакция связывания данного пигмента с глюкуроновой кислотой. После чего получается так называемый прямой билирубин. Это вещество уже не обладает токсичными свойствами.

Однако нормальные цифры прямого билирубина не превышают 20−20,5 мкмоль/литр. Так как большая его часть идет в желчные протоки печени. Откуда весь прямой билирубин вместе с желчью попадает в желчный пузырь.

В процессе пищеварения желчь поступает к пищевому комку через большой дуоденальный сосочек. Это происходит в полости двенадцатиперстной кишки. Здесь от билирубина происходит отделение глюкуроновой кислоты и образование уробилиногена. В других отделах кишечника обмен билирубина происходит преимущественно под действием ферментов бактерий.

Часть уробилиногена всасывается из тонкого кишечника. Она составляет так называемую почечную фракцию, так как большая ее часть выводится вместе с мочой. Кстати, именно уробилиноген придает характерный желтый оттенок. Небольшое количество уробилиногена попадает в ретикулярный макрофаги печени, где из него вновь образуется биливердин. И  процесс снова повторяется.

Другая часть уробилиногена при попадании в толстый кишечник, подвергаясь действию бактериальных ферментов, становиться стеркобилином и выводиться из организма с калом. Данный пигмент имеет насыщенный коричневый цвет и определяет характер окрашивания кала.

Оцените статью: (голосов: 1 , среднее: 5,00 из 5)  Loading ...

vashnevrolog.ru

обмен билирубина

Обмен билирубина

В основе образования билирубина лежит разрушение железосодержащей части гемоглобина и других гемсодержащих белков и ферментов. Гем распадается до биливердина, который восстанавливается в билирубин.

Свободный билирубин токсичен, не растворяются в воде и циркулирует в крови в комплексе с альбуминами. Этот билирубин дает непрямую реакцию Ван ден Берга (после осаждения альбуминов спиртом), поэтому называется непрямым.

Непрямой билирубин, будучи связанным с альбуминами, не проходит через неповрежденные мембраны почечных клубочков и не фильтруется в мочу.

Выведение билирубина осуществляется с желчью через кишечник. Билирубин, связанный с альбуминами, доставляется кровью в печень. Билирубин легко проникает через мембраны гепатоцитов, альбумины остаются в кровотоке.

В гепатоцитах билирубин соединяется с глюкуроновой кислотой, превращаясь в билирубинмоно- и диглюкуронид («выпрямляется», прямой,связанный).

Образованные билирубинглюкурониды нетоксичны, легко растворимы. Они направляются с желчью в кишечник для выведения из организма.

Из кишечника билирубин глюкурониды частично поступают в кровоток и, находясь в крови, представляют собой фракцию прямого билирубина, который дает прямую реакцию Ван ден Берга. Прямой билирубин в отличие от непрямого легко проникает через почечные фильтры и может выделяться с мочой.

В физиологических условиях сыворотка крови содержит при мерно 25 % прямого билирубина (связанного с глюкуроновой кислотой) и 75 % непрямого билирубина (альбумин-билирубина).

Таким образом, общий билирубин крови представляет собой суммарное количество непрямого и прямого билирубина.

У здоровых людей в сыворотке крови содержится билирубина 1,7—20,5 мкмоль/литр; прямого — 0,4—5,1 мкмоль/литр.

Обмен билирубина

Билирубин представляет собой конечный продукт распада гема. Основная часть (80—85%) билирубина образуется из гемоглобина и лишь небольшая часть — из других гемсодержащих белков, например цитохрома Р450. Образование билирубина происходит в клетках ретикулоэндотелиальной системы. Ежедневно образуется около 300 мг билирубина.

Преобразование гема в билирубин происходит с участием микросомального фермента гемоксигеназы, для работы которого требуются кислород и НАДФН. Расщепление порфиринового кольца происходит селективно в области метановой группы в положении а. Атом углерода, входящий в состав a-метанового мостика, окисляется до моноксида углерода, и вместо мостика образуются 2 двойные связи с молекулами кислорода, поступающими извне. Образующийся в результате этого линейный тетрапиррол по структуре является IX-aльфа-биливердином. Далее он преобразуется биливердинредуктазой, цитозольным ферментом, в IX-aльфа-билирубин. Линейный тетрапиррол такой структуры должен растворяться в воде, в то время как билирубин является жирорастворимым веществом. Растворимость в липидах определяется структурой IX-aльфа-билирубина — наличием 6 стабильных внутримолекулярных водородных связей [5]. Эти связи можно разрушить спиртом в диазореакции (Ван ден Берга), в которой неконъюгированный (непрямой) билирубин превращается в конъюгированный (прямой). In vivo стабильные водородные связи разрушаются этерификацией с помощью глюкуроновой кислоты.

Около 20% циркулирующего билирубина образуется не из гема зрелых эритроцитов, а из других источников. Небольшое количество поступает из незрелых клеток селезёнки и костного мозга. При гемолизе это количество увеличивается. Остальной билирубин образуется в печени из гемсодержащих белков, например миоглобина, цитохромов, и из других неустановленных источников. Эта фракция увеличивается при пернициозной анемии, эритропоэтической уропорфирин и при синдроме Криглера-Найяра.

Транспорт и конъюгация билирубина в печени

Неконъюгированный билирубин в плазме прочно связан с альбумином. Только очень небольшая часть билирубина способна подвергаться диализу, однако под влиянием веществ, конкурирующих с билирубином за связывание с альбумином (например, жирных кислот или органических анионов), она может увеличиваться. Это имеет важное значение у новорождённых, у которых ряд лекарств (например, сульфаниламиды и салицилаты) может облегчать диффузию билирубина в головной мозг и таким образом способствовать развитию ядерной желтухи.

Печенью выделяются многие органические анионы, в том числе жирные кислоты, жёлчные кислоты и другие компоненты жёлчи, не относящиеся к жёлчным кислотам, такие как билирубин (несмотря на его прочную связь с альбумином). Исследования показали, что билирубин отделяется от альбумина в синусоидах, диффундирует через слой воды на поверхности гепатоцита |55]. Высказанные ранее предположения о наличии рецепторов альбумина не подтвердились. Перенос билирубина через плазматическую мембрану внутрь гепатоцита осуществляется с помощью транспортных белков, например транспортного белка органических анионов [50], и/или по механизму «флип-флоп» [55]. Захват билирубина высокоэффективен благодаря его быстрому метаболизму в печени в реакции глюкуронидизации и выделению в жёлчь, а также вследствие наличия в цитозоле связывающих белков, таких как лигандины (глутатион-8-трансфераза).

Неконъюгированный билирубин представляет собой неполярное (жирорастворимое) вещество. В реакции конъюгации он превращается в полярное (водорастворимое вещество) и может благодаря этому выделяться в желчь. Эта реакция протекает с помощью микросомального фермента уридиндифосфатглюкуронилтрансферазы (УДФГТ), превращающего неконъюгированный билирубин в конъюгированный моно- и диглюкуронид билирубина. УДФГТ является одной из нескольких изоформ фермента, обеспечивающих конъюгацию эндогенных метаболитов, гормонов и нейротрансмиттеров.

Ген УДФГТ билирубина находится на 2-й паре хромосом. Структура гена сложная (рис. 12-4) [2, 54]. У всех изоформ УДФГТ постоянными компонентами являются экзоны 2—5 на 3'-конце ДНК гена. Для экспрессии гена необходимо вовлечение одного из нескольких первых экзонов. Так, для образования изоферментов билирубин-УДФГТ1*1 и 1*2 необходимо вовлечение соответственно экзонов 1А и ID. Изофермент 1*1 участвует в конъюгации практически всего билирубина, а изофермент 1*2 почти или вовсе не участвует в этом [25]. Другие экзоны (IF и 1G) кодируют изоформы фенол-УДФГТ. Таким образом, выбор одной из последовательностей экзона 1 определяет субстратную специфичность и свойства ферментов.

Дальнейшая экспрессия УДФГТ 1*1 зависит также от промоторного участка на 5'-конце, связанного с каждым из первых экзонов |6|. Промоторный участок содержит последовательность ТАТАА.

Детали строения гена важны для понимания патогенеза неконъюгированной гипербилирубинемии (синдромы Жильбера и Криглера—Найяра; см. соответствующие разделы), когда в печени содержание ферментов, ответственных за конъюгацию, снижено или они отсутствуют.

Активность УДФГТ при печёночно-клеточной желтухе поддерживается на достаточном уровне, а при холестазе даже увеличивается. У новорождённых активность УДФГТ низкая.

У человека в жёлчи билирубин представлен в основном д и глюкуронидом. Превращение билирубина в моноглюкуронид, а также в диглюкуронид происходит в одной и той же микросомальной системе глюкуронилтрансферазы [37]. При перегрузке билирубином, например при гемолизе, образуется преимущественно моноглюкуронид, а при уменьшении поступления билирубина или при индукции фермента возрастает содержание диглюкуронида.

Наиболее важное значение имеет конъюгация с глюкуроновой кислотой, однако небольшое количество билирубина конъюгируется с сульфатами, ксилозой и глюкозой; при холестазе эти процессы усиливаются [II].

В поздних стадиях холестатической или печёночно-клеточной желтухи, несмотря на высокое содержание в плазме, билирубин в моче не выявляется. Очевидно, причиной этого является образование билирубина типа III, моноконъюгированного, который ковалентно связан с альбумином [54]. Он не фильтруется в клубочках и, следовательно, не появляется в моче. Это снижает практическую значимость проб, применяемых для определения содержания билирубина в моче.

Экскреция билирубина в канальцы происходит с помощью семейства АТФ-зависимых мультиспецифичных транспортных белков для органических анионов [27]. Скорость транспорта билирубина из плазмы в жёлчь определяется этапом экскреции глюкуронида билирубина.

Жёлчные кислоты переносятся в жёлчь с помощью другого транспортного белка. Наличие разных механизмов транспорта билирубина и жёлчных кислот можно проиллюстрировать на примере синдрома Дубина—Джонсона, при котором нарушается экскреция конъюгированного билирубина, но сохраняется нормальная экскреция жёлчных кислот. Большая часть конъюгированного билирубина в жёлчи находится в смешанных мицеллах, содержащих холестерин, фосфолипиды и жёлчные кислоты. Значение аппарата Гольджи и микрофиламентов цитоскелета гепатоцитов для внутриклеточного транспорта конъюгированного билирубина пока не установлено.

Диглюкуронид билирубина, находящийся в жёлчи, водорастворим (полярная молекула), поэтому в тонкой кишке не всасывается. В толстой кишке конъюгированный билирубин подвергается гидролизу b-глюкуронидазами бактерий с образованием уробилиногенов. При бактериальном холангите часть диглюкуронида билирубина гидролизуется уже в жёлчных путях с последующей преципитацией билирубина. Этот процесс может иметь важное значение для образования билирубиновых жёлчных камней.

Уробилиноген, имея неполярную молекулу, хорошо всасывается в тонкой кишке и в минимальном количестве — в толстой. Небольшое количество уробилиногена, которое в норме всасывается, вновь экскретируется печенью и почками {энтерогепатическая циркуляция). При нарушении функции гепатоцитов печёночная реэкскреция уробилиногена нарушается и увеличивается почечная экскреция. Данный механизм объясняет уробилиногенурию при алкогольной болезни печени, при лихорадке, сердечной недостаточности, а также на ранних стадиях вирусного гепатита.

Распределение билирубина в тканях при желтухе

Циркулирующий билирубин, связанный с белком, с трудом проникает в тканевые жидкости с низким содержанием белка. Если количество белка в них увеличивается, желтуха становится более выраженной. Поэтому экссудаты обычно более желтушны, чем транссудаты.

Ксантохромия цереброспинальной жидкости более вероятна при менингите; классическим примером этому может служить болезнь Вейля (желтушный лептоспироз) с сочетанием желтухи и менингита.

У новорождённых может наблюдаться желтушное прокрашивание базальных ганглиев головного мозга (ядерная желтуха), обусловленное высоким уровнем неконъюгированного билирубина в крови, имеющего сродство к нервной ткани.

При желтухе содержание билирубинам цереброспинальной жидкости небольшое: одна десятая или одна сотая от уровня билирубина в сыворотке.

При выраженной желтухе внутриглазная жидкость может окрашиваться в жёлтый цвет, чем объясняется чрезвычайно редкий симптом — ксантопсия (больные видят окружающие предметы в жёлтом цвете).

При выраженной желтухе жёлчный пигмент появляется в моче, поте, семенной жидкости, молоке. Билирубин является нормальным компонентом синовиальной жидкости, может содержаться и в норме.

Цвет кожи парализованных и отёчных участков тела обычно не изменяется.

Билирубин легко связывается с эластической тканью. Она в большом количестве содержится в коже, склерах, стенке кровеносных сосудов, поэтому эти образования легко становятся желтушными. Этим же объясняется несоответствие выраженности желтухи и уровня билирубина в сыворотке в периоде выздоровления при гепатите и холестазе.

Факторы, определяющие выраженность желтухи

Даже при полной обструкции жёлчных путей выраженность желтухи может варьировать. Вслед за быстрым повышением уровень билирубина в сыворотке приблизительно через 3 нед начинает снижаться, даже если обструкция сохраняется. Выраженность желтухи зависит как от выработки жёлчного пигмента, так и от экскреторной функции почек. Скорость образования билирубина из гема может меняться; при этом возможно образование, помимо билирубина, и других продуктов, которые не вступают в диазореакцию. Билирубин, в основном неконъюгированный, может также выделяться из сыворотки слизистой оболочки кишечника.

При длительном холестазе кожа приобретает зеленоватый оттенок, вероятно вследствие отложения биливердина, не участвующего в диазореакции (Ван ден Берга), а возможно, и других пигментов.

Конъюгированный билирубин, способный растворяться в воде и проникать в жидкости тела, вызывает более выраженную желтуху, чем неконъюгированный. Внесосудистое пространство тела больше, чем внутрисосудистое. Поэтому печёночно-клеточная и холестатическая желтуха обычно более интенсивная, чем гемолитическая.

Классификация желтухи

Существует 4 механизма развития желтухи.

Во-первых, возможно повышение нагрузки билирубином на гепатоциты. Во-вторых, могут нарушаться захват и перенос билирубина в гепатоцит. В-третьих, может нарушаться процесс конъюгации. И наконец, может нарушаться экскреция билирубина в жёлчь через канальцевую мембрану либо развиваться обструкция более крупных жёлчных путей.

Выделяют 3 типа желтухи:

Эти типы желтухи, особенно печёночная и холестатическая, имеют во многом сходные проявления.

Надпечёночная желтуха. Уровень общего билирубина в сыворотке повышается, активность сывороточных трансаминаз и ЩФ сохраняется в пределах нормы. Билирубин представлен в основном неконъ­югированной фракцией. В моче билирубин не выявляется. Этот тип желтухи развивается при гемолизе и наследственных нарушениях обмена билирубина.

Печёночная (печёночно-клеточная) желтуха (см. главы 16 и 18) обычно развивается быстро и имеет оранжевый оттенок. Больных беспокоят выраженная слабость и утомляемость. Печёночная недоста­точность может быть выражена в разной степени. При лёгкой печёночной недостаточности можно выявить лишь незначительные нарушения психического статуса, более выраженная печёночная недостаточность сопровождается появлением «хлопающего» тремора, спутанности сознания и комы. Небольшая задержка жидкости может проявиться лишь увеличением массы тела, при значительной задержке жидкости появляются отёки и асцит. Вследствие нарушения синтеза печенью факторов свёртывания крови возможны кровоподтёки, как после венопункций, так и спонтанные. При биохимическом исследовании выявляют повышение активности сывороточных трансаминаз; при длительном течении заболевания возможно также снижение уровня альбумина в сыворотке.

Холестатическая желтуха (см. главу 13) развивается при нарушении поступления жёлчи в двенадцатиперстную кишку. Значительного нарушения состояния больного (помимо симптомов основного заболевания) не происходит, отмечается интенсивный зуд. Желтуха прогрессирует, в сыворотке повышаются уровень конъюгированного билирубина, активность печёночной фракции ЩФ, ГГТП, а также уровень общего холестерина и конъюгированных жёлчных кислот. Вследствие стеатореи уменьшается масса тела и нарушается всасывание витаминов А, Д, Е, К, а также кальция.

Диагностика желтухи

Большое значение в установлении диагноза при желтухе имеют тщательно собранный анамнез, клиническое и лабораторное обследование и биохимический и клинический анализ крови. Необходимо исследование кала, которое должно включать анализ на скрытую кровь. При исследовании мочи следует исключить повышение содержания билирубина и уробилиногена. Дополнительные методы исследования — ультразвуковое исследование (УЗИ), биопсию печени и холангиографию (эндоскопическую или чрескожную) — применяют по показаниям в зависимости от типа желтухи.

studfiles.net

Обмен билирубина в организме. Причины желтухи

Желчные пигменты представляют собой продукты расщепления гемма. Первичный продукт катаболизма гемма- тетрапиррол. Он в организме с помощью ферментов превращается в билирубин. Эти вещества в воде не растворяются. Вместе с белками крови – альбуминами билирубин попадает в печень и конъюгируется. Конъюгация в печени делает из билирубина водорастворимое вещество, и происходит это с помощью реакции с  глюкуроновой кислотой. Билирубин выделяется в желчь, которая поступает в кишечник, и таким образом выводится с организма.

Механизмы и цели конъюгации билирубина в печени

Билирубин в свободном виде, который поступает из крови в печень, связывается с глюкуроновой кислотой. Этот процесс происходит в гладком эндоплазматическом ретикулуме с участием набора ферментов УДФ- глюкуронилтрансферазы и УДФ- глюкуроновой кислоты. При этом синтезируются моно- и диглюкурониды. Билирубин- глюкуронид - это прямой, связанный  или конъюгированный билирубин.

После образования конъюгированного билирубина он выделяется в желчные протоки АТФ- зависимым переносчиком. При попадании в кишечник бактериальная в- глюкуронидаза превращает билирубин в свободный билирубин. При этом небольшое количество прямого билирубина может попадать из желчи в кровь по межклеточным промежуткам. Таким образом, в плазме крови присутствуют одновременно две формы билирубина - прямой и непрямой.

Превращение билирубина в кишечнике. Виды билирубина

При попадании из желчных протоков в кишечник конъюгированный билирубин подвергается действию кишечной микрофлоры, и прямой билирубин превращается в мезобилирубин и мезобилиноген (уробилиноген). Некоторая часть этих соединений попадает в кровь и переносится в печень. В печени мезобилирубин и уробилиноген окисляются до ди- и трипироллов. В здоровом и нормально функционирующем организме такие соединения билирубина не попадают в мочу и кровь человека. Они полностью остаются в клетках печени. Остаточная часть билирубина в толстом кишечнике под действием микрофлоры превращается в стеркобилин, который окрашивает кал в коричневый цвет. Таким образом билирубин выводится с организма.

obmen-bilirubina-v-organizme-prichiny-zheltukhi

Повышенный билирубин при нарушении процесса конъюгации

При снижении активности билирубинглюкуронилтрансферазы нарушается процесс конъюгации билирубина в печени и наблюдается повышенный билирубин за счет непрямого билирубина. Такой процесс наблюдается у новорожденных, у которых фермент еще не функционирует должным образом. При этом кожа и склеры желтеют, а уровень билирубина в крови не выше 150мг/л. Это состояние физиологичное и проходит бесследно на второй неделе жизни. У недоношенных деток желтуха затягивается иногда до 4 недель. При этом уровень билирубина может достигать около 200мг/л. Такая ситуация опасна тем, что может развиться билирубиновая энцефалопатия.

Также есть заболевание, которое не дает созреть глюкуронилтрансферазе. Это заболевание щитовидной железы – гипотиреоз. Билирубин при гипотиреозе может достигать 350мг/л.

Наследственные нарушения конъюгации билирубина в печени

Существуют патологии и синдромы, которые сопровождаются дефектами синтеза глюкуронилтрансферазы и нарушением процесса конъюгации билирубина в печени.

При втором типе синдрома гипербилирубинемия менее высокая. Отличить типы синдрома Криглера- Наияра можно по эффективности лечения фенобарбиталом. При втором типе уровень билирубина и часть неконьюгированного билирубина снижаются, а содержание моно- и диконъюгатов в желчи увеличивается. При первом типе концентрация билирубина в сыворотке крови не снижается.

Причины приобретенного повышения билирубина в печени

Приобретенные нарушения активности глюкуронилтрансферазы могут быть спровоцированы приемом некоторых лекарственных средств и патологией печени. Повреждение клеток печени приводит к снижению функции выделения больше, чем функция связывания билирубина. Поэтому при заболевании печени всегда повышенный билирубин в основном за счет конъюгированного билирубина.

 Также заболевания печени, такие как цирроз и гепатит, провоцируют нарушения активности фермента. Когда повреждаются печеночные клетки, между желчными путями, кровеносными и лимфатическими сосудами появляются протоки, через которое желчь поступает в кровь. Отекшие из-за патологического процесса гепатоциты сдавливают желчные протоки и вызывают механическую желтуху.

estet-portal.com


Смотрите также