Билирубин конъюгированный прямой


101. Буферные системы крови: бикарбонатная, фосфатная, белковая, гемоглобиновая. Причины развития и формы ацидоза и алкалоза. Возможные последствия этих отклонений.

Буферные системы крови

Установлено, что состоянию нормы соответствует определенный диапазон колебаний рН крови — от 7,37 до 7,44 со средней величиной 7,40. Кровь представляет собой взвесь клеток в жидкой среде, поэтому ее кислотно-основное равновесие поддерживается совместным участием буферных систем плазмы и клеток крови. Важнейшими буферными системами крови являются бикарбонатная, фосфатная, белковая и наиболее мощная гемогло-биновая.

Бикарбонатная буферная система—мощная и, пожалуй, самая управляемая система внеклеточной жидкости и крови. На долю бикарбонатного буфера приходится около 10% всей буферной емкости крови. Бикарбонат

Для данной буферной системы величину рН в растворе можно выразить через константу диссоциации угольной кислоты (рКН2СО3) и логарифм концентрации недиссоциированных молекул Н2СО3 и ионов HCO3—:

Ная система представляет собой сопряженную кислотно-основную пару, состоящую из молекулы угольной кислоты Н2СО3, выполняющую роль донора протона, и бикарбонат-иона НСО3—, выполняющего роль акцептора протона:

Истинная концентрация недиссоциированных молекул Н2СО3 в крови незначительна и находится в прямой зависимости от концентрации растворенного углекислого газа (СО2 + Н2О Н2СО3). Поэтому удобнее пользоваться тем вариантом уравнения, в котором рКН2СО3 заменена «кажущейся» константой диссоциации Н2СО3, учитывающей общую концентрацию растворенного СО2 в крови:

Где K1 — «кажущаяся» константа диссоциации Н2СО3; [СО2(р)] — концентрация растворенного СО2.

При нормальном значении рН крови (7,4) концентрация ионов бикарбоната НСО3 в плазме крови превышает концентрацию СО2 примерно в 20 раз. Бикарбонатная буферная система функционирует как эффективный регулятор в области рН 7,4.

Механизм действия данной системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов водородные ионы Н+ взаимодействуют с ионами бикарбоната НСО3—, что приводит к образованию слабодиссоциирующей угольной кислоты Н2СО3. Последующее снижение концентрации Н2СО3 достигается в результате ускоренного выделения СО2 через легкие в результате их гипервентиляции (напомним, что концентрация Н2СО3 в плазме крови определяется давлением СО2 в альвеолярной газовой смеси).

Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой, образуют ионы бикарбоната и воду. При этом не происходит сколько-нибудь заметных сдвигов в величине рН. Кроме того, для сохранения нормального соотношения между компонентами буферной системы в этом случае подключаются физиологические механизмы регуляции кислотно-основного равновесия: происходит задержка в плазме крови некоторого количества СО2 в результате гиповентиляции легких. Как будет показано далее, данная буферная система тесно связана с гемоглобиновой системой.

Фосфатная буферная система представляет собой сопряженную кислотно-основную пару, состоящую из иона Н2РО4— (донор протонов) и иона НРО42— (акцептор протонов):

Роль кислоты в этой системе выполняет однозамещенный фосфат Nah3PO4, а роль соли двузамещенный фосфат—Na2HPO4.

Фосфатная буферная система составляет всего лишь 1% от буферной емкости крови. В других тканях эта система является одной из основных. Для фосфатной буферной системы справедливо следующее уравнение:

Во внеклеточной жидкости, в том числе в крови, соотношение [НРО42—]: [Н2РО4—] составляет 4:1. Величина рКН2РО4— равна 6,86.

Буферное действие фосфатной системы основано на возможности связывания водородных ионов ионами НРО42— с образованием Н2РО4— (Н+ + + НРО42— —> Н2РО4—), а также ионов ОН— с ионами Н2РО4— (ОН— + + Н2РО4——> HPO42— + h3O). Буферная пара (Н2РО4——НРО42—) способна оказывать влияние при изменениях рН в интервале от 6,1 до 7,7 и может обеспечивать определенную буферную емкость внутриклеточной жидкости, величина рН которой в пределах 6,9—7,4. В крови максимальная емкость фосфатного буфера проявляется вблизи значения рН 7,2. Фосфатный буфер в крови находится в тесном взаимодействии с бикарбонатной буферной системой. Органические фосфаты также обладают буферными свойствами, но мощность их слабее, чем неорганического фосфатного буфера.

Белковая буферная система имеет меньшее значение для поддержания КОР в плазме крови, чем другие буферные системы.

Белки образуют буферную систему благодаря наличию кислотно-основных групп в молекуле белков: белок—Н+ (кислота, донор протонов) и белок (сопряженное основание, акцептор протонов). Белковая буферная система плазмы крови эффективна в области значений рН 7,2—7,4.

Гемоглобиновая буферная система—самая мощная буферная система крови. Она в 9 раз мощнее бикарбонатного буфера; на ее долю приходится 75% от всей буферной емкости крови.

Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и углекислого газа. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от его насыщения кислородом. При насыщении кислородом гемоглобин становится более сильной кислотой (ННЬО2). Гемоглобин, отдавая кислород, превращается в очень слабую органическую кислоту (ННЬ).

Итак, гемоглобиновая буферная система состоит из неионизированного гемоглобина ННЬ (слабая органическая кислота, донор протонов) и калиевой соли гемоглобина КНЬ (сопряженное основание, акцептор протонов). Точно так же может быть рассмотрена оксигемоглобиновая буферная система. Система гемоглобина и система оксигемоглобина являются вза-имопревращающимися системами и существуют как единое целое. Буферные свойства гемоглобина прежде всего обусловлены возможностью взаимодействия кисло реагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:

Именно таким образом превращение калийной соли гемоглобина эритроцитов в свободный ННЬ с образованием эквивалентного количества бикарбоната обеспечивает поддержание рН крови в пределах физиологически допустимых величин, несмотря на поступление в венозную кровь огромного количества углекислого газа и других кисло реагирующих продуктов обмена.

Гемоглобин (ННЬ), попадая в капилляры легких, превращается в окси-гемоглобин (ННЬО2), что приводит к некоторому подкислению крови, вытеснению части Н2СО3 из бикарбонатов и понижению щелочного резерва крови. Перечисленные буферные системы крови играют важную роль в регуляции кислотно-основного равновесия. Как отмечалось, в этом процессе, помимо буферных систем крови, активное участие принимают также система дыхания и мочевыделительная система.

АЦИДОЗ И АЛКАЛОЗ.

Ацидоз (закисление) развивается в результате увеличения концентрации ионов Н+ выше нормы или уменьшения концентрации ионов НСО3 ниже нормы, что приводит к ацидемии, т.е. снижению pH артериальной крови ниже 7,35. Причиной избытка ионов Н+ или нарушения соотношения Н2СО3/НСО3 может быть нарушение дыхания (респираторный, т.е. газовый, ацидоз) или метаболизма (обменный, т.е. негазовый, ацидоз).

Алкалоз (защелачивание, алкалемия) происходит вследствие уменьшения концентрации ионов Н+ в жидкостях организма или избытка ионов НСО3, что приводит к увеличению pH артериальной крови более 7,45. Причиной истощения запаса ионов Н+ является либо усиленное выведение углекислого газа (первичная гипервен-тиляоия), либо первичный избыток бикарбонатных оснований вследствие нарушения метаболизма.

Влияние нарушения соотношения бикарбоната и угольной кислоты на pH крови рассмотрено ранее. Как ацидозы, так и алкалозы могут быть вызваны респираторными или метаболическими причинами. Существуют четыре типа нарушений КОР: респираторный ацидоз, респираторный алкалоз, метаболический ацидоз и метаболический алкалоз.

Ацидоз может быть компенсированным и декомпенсированным. Компенсированное состояние ацидоза осуществляется, если буферные системы и физиологические механизмы компенсации препятствуют сдвигу pH за пределы физиологической нормы. Если эффект компенсации недостаточен, то происходит увеличение концентрации ионов водорода, снижается величина pH и ацидоз становится декомпенсированным. Рассчитано, что когда содержание бикарбонатов плазмы становится меньше 22 моль/л, то pH артериальной крови опускается ниже 7^35.

Метаболический ацидоз. Такое состояние возникает в результате избыточного образования или поступления в организм органических или неорганических кислот.

Чаще всего образование кислот увеличивается вследствие нарушения обмена веществ, например при сахарном диабете или голодании, когда в тканях и в крови создается избыток продуктов неполного окисления белков, жиров и углеводов, являющихся преимущественно кислотами (молочная. (3-гидроксимасляная, ацетоуксусная и др.).

Метаболический ацидоз наблюдается также при интенсивной физической работе, при гипоксиях любого происхождения, тяжелой лихорадке. Тяжелое поражение печени препятствует нейтрализации кислот, почечная недостаточность приводит к азотемическому ацидозу, который обусловлен задержкой в организме кислых фосфатов, а также анионов других органических кислот. При заболеваниях почек нарушается активная секреция ионов Н+ в почечные канальцы, а выделение катионов Na+ и К+ сохраняется, поэтому развивается отрицательный баланс минеральных веществ. Тяжелые воспалительные процессы также являются причиной метаболического ацидоза.

К причинам метаболического ацидоза относится также избыточная потеря анионов НСО3 чаще всего через желудочно-кишечный тракт: бикарбонаты натрия и калия теряются в большом количестве при диарее, свищах желудка, желчного и панкреатического протоков.

Потеря щелочных ионов приводит к относительному преобладанию ионов Н+, которые выделяются из организма через почки в составе кислых натриевых и калиевых солей. Однако, если удаление из организма этих солей не успевает за накоплением ионов Н\ то развивается ацидоз. В связи с потерей гидрокарбонатов буферная емкость крови постепенно снижается до величины ниже 10 мэкв/л (в норме 20—26). Под влиянием более сильных кислот Н2СОэ разрушается до СО2 и Н2О. Увеличение РСО2 в артериальной крови стимулирует деятельность дыхательного центра, возникает гипервентиляция, и избыток СО2 выделяется из организма, уменьшая тем самым и концентрацию ионов Н+.

Если быстрые (гемический и дыхательный) механизмы компенсации не нормализуют КОС, то включается медленный механизм компенсации — почечный. Он заключается в том, что при дыхательном ацидозе увеличивается аммониогенез, аммиак соединяется с ионами водорода и хлора, а оставшиеся ионы натрия реабсорбируются в обмен на ионы водорода в почечных канальцах, что вызывает дальнейшие изменения pH мочи. При декомпенсации в условиях метаболического ацидоза возникает внутриклеточный ацидоз. В свою очередь ацидоз включает каскад функциональных изменений центральной и периферической гемодинамики. Важнейшим из них является падение тонуса сосудов, гиповолемия, уменьшение притока крови к правому предсердию, снижение ударного и минутного объемов, а также коронарного и мозгового кровообращения, развитие циркуляторной гипоксии.

Гипоксия и гипер-Н+-иония вызывают повышение проницаемости сосудов со склонностью к развитию отеков. При резком увеличении проницаемости в почечных клубочках происходит увеличение вязкости первичной мочи, что препятствует фильтрации в почках, олигурия, недостаточное выведение калия, натрия, хлора и других электролитов, увеличение их концентрации в крови и межклеточной жидкости. Повышение осмотического давления, вызванного избытком калия и других низкомолекулярных веществ, ведет к обезвоживанию клеток с глубоким нарушением окислительно-восстановительных процессов и, таким образом, к прогрессирующему развитию ацидоза и тяжелой общей интоксикации. Объем внеклеточной жидкости, наоборот, возрастает, развиваются отеки.

При ацидозе наблюдается усиление диссоциации оксигемоглобина, благодаря чему улучшается транспорт кислорода в ткани. Вместе с тем образование оксигемоглобина в легочных капиллярах уменьшается, поэтому снижается насыщение артериальной крови кислородом, что способствует гипоксии. Приспособительное значение этого механизма заключается в том, что уменьшение содержания оксигемоглобина в крови и увеличение восстановленного гемоглобина приводят к проявлению его буферного действия, направленного на связывание избытка ионов водорода.

После возникновения первичного ацидоза, обусловленного метаболическими расстройствами, наблюдается гипервентиляция, которая представляет собой дыхательную компенсацию метаболических расстройств. Эта дыхательная компенсация начинается значительно раньше, чем метаболическая. Однако заканчивается компенсаторная одышка позднее, чем нормализуется pH крови (т.е. устраняется ацидоз). Происходит это, вероятно, из-за медленной диффузии ионов НСО3, в отличие от углекислого газа, между внеклеточной и спинномозговой жидкостью. Концентрация НС03 в спинномозговой жидкости остается ниже нормы более длительное время, чем в крови. Повышение РСО2 без соответствующего увеличения концентрации

НСO3 вызывает быстрое снижение pH спинномозговой жидкости, что стимулирует дыхательный центр. Если же на фоне метаболических расстройств гипервентиляция приводит к значительному снижению СО2 (гипокапния), то возбудимость дыхательного центра снижается.

Респираторный ацидоз. Причиной респираторного ацидоза является уменьшение выделения из организма углекислого газа через легкие в результате нарушения функции самой легочной ткани, иннервационного аппарата, дыхательной мускулатуры, уменьшения возбудимости дыхательного центра и других причин. Развитие газового ацидоза может быть также обусловлено повышением содержания углекислоты во вдыхаемом воздухе. Возникающее в этих условиях увеличение РСО2 в артериальной крови может достигать 70— 120 мм рт. ст. (при норме 35 — 45 мм рт. ст.).

Наиболее важной буферной системой, участвующей в компенсации газового аппарата, является гемоглоби-новый буфер, так как при диссоциации Н2СО3 ионы Н+ удерживаются восстановленным гемоглобином эритроцитов. В эритроциты поступают ионы хлора, а в обмен на них в плазму переходят ионы НС03, которые приводят к образованию дополнительных количеств NaHCO3 Следовательно, увеличение концентрации NaHCO3 является компенсаторной реакцией на первичное увеличение Н2СO3 в результате накопления СО2. Поэтому соотношение между компонентами бикар-бонатной системы сохраняется, а значение pH остается в пределах физиологической нормы.

Другим компенсаторным механизмом при газовом ацидозе, выражающемся в увеличении концентрации NaHCО3, является усиление реабсорбции Na в почках. Механизм этой реакции заключается в том. что возрастание РСО2 в крови приводит к увеличению взаимодействия фосфатного и карбонатного буферов, в результате чего повышается превращение в первичной моче основных фосфатов Na2HP04 в кислые — Nah3PО4, которые и выделяются. Одновременно с этим наблюдается некоторое увеличение титруемой кислотности мочи.

Если возникновение газового ацидоза не обусловлено первичным нарушением со стороны внешнего дыхания, то наблюдается прямое, или рефлекторное (через хеморецепторы), возбуждение дыхательного центра, увеличение частоты и глубины дыхания. Установлено, что при повышении Рсо? крови на 10 мм рт. ст. минутный объем дыхания возрастает в 4 раза. При недостаточности органовдыхания этот компенсаторный механизм отсутствует и ацидоз прогрессирует.

Если причиной газового ацидоза является увеличение РСО2 в окружающем воздухе, то активация внешнего дыхания также не приводит к нормализации РСО2 крови и межклеточной жидкости. Увеличение РСО2, в крови, независимо от причин, влечет за собой гемодинамические расстройства, что выражается в спазме артериол. Повышение тонуса почечных артериол вызывает уменьшение кровоснабжения почечных клубочков и увеличение активности ренин-ангиотензин-альдостероновой системы. Это вызывает сужение приводящих сосудов почечных клубочков, уменьшение моче-образования и олигурию. Кроме того, повышение сосудистого тонуса влечет за собой увеличение периферического сопротивления, нарушение микроциркуляции и создает более высокое сопротивление работе сердца. В отличие от периферических сосудов сосуды мозга под влиянием увеличенного содержания углекислого газа расширяются, что вызывает усиление образования спинномозговой жидкости и увеличение внутричерепного давления.

Одним из наиболее тяжелых осложнений при чрезмерном увеличении РСО2 в крови является резкое возбуждение центра блуждающего нерва, в результате развивается брадикардия и происходит остановка сердца в диастоле. Со стороны легких наблюдается повышение тонуса гладкой мускулатуры бронхиол, увеличение секреции слизи, возможно образование ателектазов. Для хронической легочной недостаточности типичной является задержка в организме натрия, увеличение количества которого во внеклеточном пространстве вызывает задержку воды и развитие отеков. Если отек поражает легочную ткань, то еще больше уменьшается дыхательный объем легких и возникает порочный круг.

Метаболический алкалоз. Он характеризуется сдвигом соотношения между анионами кислот и катионами оснований крови в сторону увеличения катионов. Бикарбонат плазмы повышается более 26 ммоль/л и pH увеличивается свыше 7,45. Метаболический алкалоз возникает в результате либо избыточной потери кислот, в основном хлора в составе НС1, и калия из внеклеточной жидкости организма (тогда возникают гипокалиемические, гипохлоремические алкалозы), либо вследствие избыточного поступления в организм солей щелочных металлов — бикарбонатов и др. Поскольку в организм чаше всего вводятся натриевые соли, например NaHCО3, то такой алкалоз, как правило, бывает гипернатриемическим.

Потеря хлора часто возникает при рвоте, особенно неукротимой рвоте беременных, при желудочных свищах, многократном промывании желудка. Гипокалиемия при метаболическом алкалозе часто сопровождается гипохлоремией. Однако потеря калия может быть первичной причиной нарушения КОС, например, при использовании диуретиков, после обширных хирургических вмешательств, при гемолизе и других состояниях. Метаболический алкалоз развивается также при снижении функций околощитовидной железы.

Компенсаторные механизмы, развивающиеся при алкалозе, заключаются в основном в снижении возбудимости дыхательного центра из-за увеличения pH, а также в мобилизации почечных механизмов. Эффективность буферных систем крови при алкалозе выражена меньше, чем при ацидозе. Уменьшение минутного объема дыхания приводит к компенсаторному увеличению РСО2 в крови, что вызывает образование большого количества угольной кислоты, которая является источником ионов Н+.

Характер почечных механизмов компенсации зависит от особенностей нарушения электролитного обмена при алкалозе. Так, при гипо-хлоремической форме алкалоза усиливается выделение натрия и калия почками, а при гипернатриемии, обусловленной выведением больших количеств бикарбонатов натрия, наблюдается усиление экскреции с мочой NaHCO3 вследствие уменьшения его реабсорбции в почечных канальцах. Механизм этого процесса заключается в том, что при алкалозе уменьшается секреция, ионов водорода в просвет почечных канальцев, в связи с чем первичная моча защелачивает-ся, что и уменьшает реабсорбцию бикарбоната.

Для алкалоза характерно увеличение сродства гемоглобина к кислороду, что вызывает недостаточность кислородного снабжения тканей с характерным нарушением окислительновосстановительных процессов и присоединением внутриклеточного метаболического ацидоза. В свою очередь в капиллярах малого круга кровообращения наблюдается максимальное насыщение гемоглобина кислородом, использование которого, однако, из артериальной крови уменьшается, в связи с чем снижается артериовенозная разница по кислороду и развивается гипоксия мозга.

Дыхательный алкалоз. Возникновение дыхательного алкалоза обусловлено первичной гипервентиляцией, которая может возникнуть вследствие прямой стимуляции дыхательного центра, при поражении головного мозга, истерии и отравлении салицилатами. Рефлекторная стимуляция дыхательного центра возникает, например, вследствие сильного раздражения хеморецепторов при горной, или высотной. болезни, когда вследствие гипоксии происходит раздражение рецепторного аппарата сосудов и возникает компенсаторная гипервентиляция, снижение Рс02 в артериальной крови. Развитие гипервентиляции может также наблюдаться при использовании аппарата искусственного дыхания, а также при некоторых инфекционных токсикозах.

Ведущим признаком газового алкалоза является уменьшение РСО2, ниже 35 мм рт. ст. и соответствующее снижение концентрации ионов Н+.

При газовом алкалозе вовлекаются как быстрые, так и медленные механизмы компенсации.

Быстрый гемический механизм является малоэффективным, гак как буферная емкость бикарбонатной системы при щелочном значении pH довольно низкая. Более значительная роль в компенсации принадлежит легочному механизму. Его роль заключается в торможении возбудимости дыхательного центра, что вызывает уменьшение частоты и глубины дыхания, в результате задерживается углекислый газ. Однако из-за защелачивания нарушается диссоциация оксигемоглобина, уменьшается кислородное обеспечение организма с развитием гипоксии, которая в свою очередь влечет за собой развитие внутриклеточного ацидотического сдвига.

Механизм почечной, медленной компенсации заключается в том, что уменьшение РС02 крови при газовом алкалозе вызывает снижение образования Н2СО3, что приводит к диссоциации NaHCO3 в плазме крови. Снижение образования Н2СО3 приводит к уменьшению секреции ионов Н+ эпителием почечного канальца.

Чем меньше эта секреция, тем слабее реабсорбируется Na+ и меньше поступает в кровь ионов НС03. Вследствие этого происходит увеличение выделения NaHC03 и Na2HP04, что и вызывает компенсаторный сдвиг мочи в щелочную сторону и уменьшение содержания оснований в плазме крови. При газовом алкалозе уменьшение Рсо? усиливает переход ионов С1~ из эритроцитов в плазму, что частично компенсирует снижение содержания анионов в плазме крови.

Таким образом, первичным при газовом алкалозе является уменьшение РСО2. а вторичным — компенсаторное уменьшение концентрации оснований в крови.

К патологическим эффектам газового алкалоза при декомпенсированной его форме относится повышение тонуса сосудов головного мозга и сердца и уменьшение тонуса периферических сосудов, что приводит к гипотензии. Указанные сосудистые изменения при тяжелом алкалозе могут привести к коллапсу.

Избыточное выведение из организма оснований в виде натриевых, калиевых солей приводит к обезвоживанию организма, что вызывает резкие нарушения обменных процессов. Уменьшение содержания ионов Н- вызывает снижение концентрации ионизированного кальция, что в свою очередь приводит к повышению нервно-мышечной возбудимости вплоть до явления тетании. Кроле того, для алкалоза характерно увеличение сродства гемоглобина к кислороду, что приводит к гипоксии, в первую очередь ткани мозга.

Влияние изменений pH на обмен калия, кальция и магния. Ацидоз и алкалоз оказывают значительное влияние на обмен К- и Са2- в организме. На другие электролиты, такие как ионы Mg2-и Н2РО4. нарушение КОС также оказывает влияние, но именно изменение обмена ионов Са2- и К может оказаться угрожающим для жизни.

Как было сказано ранее, для поддержания pH крови основным ионом, который экскретируется или удерживается почечной системой, является ион Н+. Однако обмен ионов Н- сопряжен с обменом других ионов. При ацидозе в организме происходит накапливание ионов Н+, половина которых связывается буферными системами вну гриклеточно. Для сохранения электронейтральности клеток из нее выходят ионы К+ (и в небольшом количестве ионы Na+), что создает гиперкалиемию. И наоборот, при алкалозе имеется недостаточность ионов Н+, в результате чего увеличивается их поступление из клетки во внеклеточную жидкость. Ионы К\ наоборот, поступают в клетку, и развивается гипокалиемия. Таким образом, с ацидозом связана гиперкалиемия, а с алкалозом — гипокалиемия.

Изменение pH артериальной крови влияет на уровень кальция в крови. При алкалозе кальций в большем количестве связывается с белками, вызывая клинический эффект гипокальциемии в виде слабости, депрессии, тетании, спазмов гладкой мускулатуры и аритмии. При ацидозе кальций может освобождаться из соединений с белками плазмы, что повышает уровень ионизированного кальция, увеличение выделения которого через почки в течение длительного времени может привести к развитию остеопороза, однако этому препятствует усиление выработки кальцитонина и угнетение секреции паратиреоидного гормона.

При ацидозе часто наблюдается гипомагнезиемия, проявления которой сходны с таковыми при гипокальциемии.

studfiles.net

Билирубин прямой (Билирубин конъюгированный, связанный; Bilirubin direct) » 03digest Лечение и диагностика заболеваний

Билирубин прямой (Билирубин конъюгированный, связанный; Bilirubin direct)

Фракция общего билирубина крови, образующаяся в результате процессов конъюгирования свободного билирубина в печени.Это соединение свободного билирубина с глюкуроновой кислотой — глюкуронид билирубина. Хорошо растворимо в воде; проникает в ткани, малотоксичен; даёт прямую реакцию с диазореактивом, откуда и происходит название «прямой» билирубин (в отличие от неконъюгированного свободного «непрямого» билирубина, который требует добавления акселератора реакции).

Прямой билирубин синтезируется в печени и затем большая его часть поступает с желчью в тонкую кишку. Здесь от него отщепляется глюкуроновая кислота, и билирубин восстанавливается в уробилин через образование мезобилирубина и мезобилиногена (частично этот процесс протекает во внепечёночных желчных путях и желчном пузыре). Бактерии в кишечнике переводят мезобилирубин в стеркобилиноген, который частично всасывается в кровь и выделяется почками, основная его часть окисляется в стеркобилин и выделяется с калом. Небольшое количество конъюгированного билирубина поступает из печёночных клеток в кровь. При гипербилирубинемии прямой билирубин накапливается в эластической ткани, глазном яблоке, мукозных мембранах и коже.

Рост прямого билирубина наблюдается при паренхиматозных желтухах в следствие нарушения способности гепатоцитов транспортировать конъюгированный билирубин против градиента в желчь. А также при обтурационных желтухах из-за нарушения оттока желчи. У пациентов с повышенным уровнем прямого (связанного) билирубина в сыворотке отмечается билирубинурия.

Подготовка:

Биоматериал на исследование необходимо сдавать натощак. Между последним приёмом пищи и взятием крови должно пройти не менее 8 часов (желательно - не менее 12 часов). Сок, чай, кофе (тем более с сахаром) - не допускаются. Можно пить воду.

Показания:

- Заболевания печени. - Холестаз. - Дифференциальная диагностика желтух различной этиологии.

Интерпретация результатов:

Единицы измерения в Независимой лаборатории ИНВИТРО: мкмоль/л.Альтернативные единицы измерения: мг/дл.Пересчёт единиц: мг/дл х 17,1 ==> мкмоль/л.

Референсные значения: 0 - 7,9 мкмоль/л.

Повышение уровня прямого билирубина (гипербилирубинемия):

нарушение экскреции билирубина в печени:

- острый вирусный гепатит; - поражения печени инфекционной этиологии (гепатит, вызванный цитомегаловирусом, инфекционный мононуклеоз, амёбиаз, описторхоз, актиномикоз, вторичный и третичный сифилис); - острый токсический гепатит, приём гепатотоксических медикаментозных препаратов;патология желчевыводящих путей (холангиты, холециститы); - желтуха беременных; - онкопатология (первичная гепатокарцинома и печени, метастатические поражения печени); - функциональные гипербилирубинемии (синдром Дабина-Джонсона, синдром Ротора); - гипотиреоз у новорожденных.

билиарная обструкция:

- механическая желтуха (желчнокаменная болезнь, опухоли головки поджелудочной железы, глистная инвазия); - билиарный цирроз (первичный или вторичный);

склерозирующий холангит.

03digest.ru

2.5.Распад гемоглобина. Прямой (конъюгированный) и непрямой (неконъюгированный) билирубин.

Гемоглобин, освобождающийся из эритроцитов, которые разрушаются через 120 дней, в крови соединяется с гаптоглобином –α2-глобулин и транспортируется в клетки РЭС, главным образом селезенки. Здесь Нb окисляется в метгемоглобин, а затем подвергается распаду. При этом гаптоглобин отщепляется и переходит в кровь.

Под действием гемоксигеназы происходит расщепление α-метинового мостика гема, соединяющего два соседних пиррольных кольца. Кольцевая структура гема разрывается и образуется вердоглобин. От вердоглобина отщепляется железо, которое связывается с белком – трансферином и доставляется с кровью в печень и глобин. Глобин гидролизуется катепсинами селезенки до аминокислот и в результате образуется биливердин – желчный пигмент зеленого цвета, который восстанавливается при участии биливердинредуктазы в билирубин – желчный пигмент красно-желтого цвета. Он является токсичным, неконъюгированным (не связанным с глюкуроновой кислотой), непрямым (так как не может давать прямую реакцию с диазореактивом), плохо растворим в воде и крови и поэтому, транспортируется в печень в комплексе с альбумином. Одна молекула альбумина свободно присоединяет 10-35 молекул билирубина. Вследствие прочной связи с белком, билирубин не экскретируется с мочой.

В печени под действием УДФ – глюкуронилтрансферазы билирубин взаимодействует с глюкуроновой кислотой (в составе УДФ-ГК) образуется билирубинглюкуронид – конъюгированный, прямой, нетоксичный и хорошо растворимый в воде.

Билирубинглюкурониды лишь в незначительных количествах могут диффундировать в кровеносные капилляры. Поэтому в плазме крови присутствуют две формы билирубина: неконъюгированный – 75% и конъюгированный – 25%,- которые вместе составляют общий билирубин. Концентрация общего билирубина в крови здорового человека - 3,5-19 мкмоль/л, у грудных детей – 3,4-14 мкмоль/л.

В составе желчи прямой билирубин секретируется в 12-перстную кишку, где под действием гидролаз бактерий происходит отщепление глюкуроновой кислоты.

В тонком кишечнике билирубин под действием бактерий превращается в мезобилиноген (уробилиноген). Часть мезобилиногена всасывается в кишечнике и по воротной вене поступает в печень, где полностью расщепляется до моно- и дипирролов.

Большая часть мезобилиногена из тонкой кишки поступает в толстый кишечник, где под действием анаэробных бактерий восстанавливается до стеркобилиногена, который, как и уробилиноген, бесцветен.

Основная часть стеркобилиногена, выделяемая с каловыми массами, окисляется на воздухе в стеркобилин – оранжево-желтый пигмент, определяющий цвет каловых масс. В сутки с калом выделяется до 250 мг стеркобилина. Небольшая часть стеркобилиногена всасывается в прямой кишке, через систему геморроидальных вен поступает в нижнюю полую вену и через почки выводится с мочой. Стеркобилиноген мочи окисляется в стеркобилин, частично определяя нормальный соломенно-желтый цвет мочи. В сутки с мочой выделяется 1-4 мг стеркобилина.

2.6. Клиническое значение определения содержания желчных пигментов крови, моче и кале в дифференциальной диагностике различных видов желтух (гемолитическая, желтуха новорожденных, обтурационная, паренхиматозная).

Под влиянием различных факторов в организме может нарушаться образование и выведение билирубина и продуктов его метаболизма. Повышение содержания билирубина в крови ведет к отложению его в тканях, в том числе в слизистых оболочках и коже, вызывая их окрашивание в желтый цвет – возникновению желтухи.

В дифференциальной диагностике желтух различной этиологии важное значение имеет определение содержания желчных пигментов в крови, моче и кале.

Различают несколько видов желтух.

Гемолитическая желтуха

Возникает в результате усиленного гемолиза эритроцитов. Причины возникновения:

серповидноклеточная анемия, талассемии, стимулирующие гемолиз, переливания несовместимых групп крови и т.д. В результате при распаде Нb образуется большое количество непрямого, токсичного билирубина, который в печени не успевает конъюгироваться. Неконъюгированный билирубин не выделяется с мочой, так как он нерастворим в воде.

Для гемолитической желтухи характерны:

Желтуха новорожденных

Желтуха новорожденных (гемолитическая желтуха) считается физиологической. Она возникает вследствии:

Это приводит к повышению в крови уровня неконъюгированного, токсичного билирубина.

Желтуха обычно проходит через 3-5 дней. У недоношенных детей - продолжается дольше. Длительное повышение неконъюгированного билирубина может быть опасным, вследствие токсического действия билирубина на развивающийся мозг (билирубиновая энцефалопатия). У взрослых клетки мозга малопроницаемы для билирубина и, как правило, осложнений при гипербилирубинемии не происходит.

Обтурационная желтуха

Возникает в результате нарушения оттока желчи в кишечник.

Причины: закупорка или сдавление общего печеночного протока камнем или опухолью головки поджелудочной железы, некоторые формы вирусного гепатита и др.

Обтурационная желтуха сопровождается высоким содержанием в крови конъюгированного билирубина, вследствие того, что желчь не поступает в кишечник и билирубин всасывается из печени в кровь. Так как конъюгированный билирубин – водорастворимое соединение, он в больших количествах выделяется с мочой. Из-за этого моча имеет цвет пива с ярко-желтой пеной. Одновременно и в кале, и в моче снижается содержание стеркобилина. Кал приобретает серовато-белый, глинистый цвет.

Паренхиматозная желтуха

Возникает вследствие повреждения паренхимы печени (инфекционный и токсический гепатиты, цирроз печени и т.д.).

Повреждение гепатоцитов снижает захват ими неконъюгированного билирубина из крови и интенсивность образования в них конъюгированного билирубина. Поэтому, не смотря на нормальный гемолиз, повышается (но не так выражено, как при гемолитической желтухе) содержание неконъюгированного, а также конъюгированного билирубина (застой желчи). В каловых массах и в моче снижается содержание стеркобилина. Кал слабо окрашен. В моче появляется уробилин и небольшое содержание конъюгированного билирубина.

studfiles.net

Билирубин прямой (Билирубин конъюгированный, связанный)

Анализ крови на фракции прямого биллирубина (коньюгированого) - общий биохимический анализ крови.

Увеличение прямого билирубинаотмечается при паренхиматозных желтухах в результате нарушения способности клеток печени транспортировать конъюгированный билирубин против градиента в желчь. А также при обтурационных желтухах в виду нарушения оттока желчи. У больных с повышенным уровнем прямого (связанного) билирубина в сыворотке отмечается билирубинемия.

Подготовка
Показания

Единицы измерения: мкмоль/л.

Альтернативные единицы измерения: мг/дл.

Пересчёт единиц: мг/дл х 17,1 ==> мкмоль/л.

Референсные значения: 0 - 7,9 мкмоль/л.

Повышение уровня прямого билирубина (гипербилирубинемия):

нарушение экскреции билирубина в печени:

  1. острый вирусный гепатит;

  2. поражения печени инфекционной этиологии (гепатит, вызванный цитомегаловирусом, инфекционный мононуклеоз, амёбиаз, описторхоз, актиномикоз, вторичный и третичный сифилис);

  3. острый токсический гепатит, приём гепатотоксических медикаментозных препаратов;

  4. патология желчевыводящих путей (холангиты, холециститы);

  5. желтуха беременных;

  6. онкопатология (первичная гепатокарцинома и печени, метастатические поражения печени);

  7. функциональные гипербилирубинемии (синдром Дабина-Джонсона, синдром Ротора);

  8. гипотиреоз у новорожденных;

билиарная обструкция:

  1. механическая желтуха (желчнокаменная болезнь, опухоли головки поджелудочной железы, глистная инвазия);

  2. билиарный цирроз (первичный или вторичный);

  3. склерозирующий холангит.

Читать полность ...

medee.ru


Смотрите также